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A B S T R A C T

Humans can continually solve new problems with a few examples and enhance their learned knowledge
by incorporating new ones. Few-shot lifelong learning (FSLL) has been presented to mimic human learning
ability. However, they overlook the significance of cross-domain knowledge and little effort has been made
to investigate it. In this paper, we explore the effects of cross-domain knowledge in FSLL and propose a
new framework to enhance the model’s ability by fusing cross-domain knowledge into the learning process.
Moreover, we investigate the impact of both debiased and non-debiased models in the FSLL context for the first
time. Compared with previous works, our setting presents a unique challenge: the model should continually
learn new knowledge from cross-domain few-shot data and update its existing knowledge by fusing new
knowledge throughout its lifelong learning process. To address this challenge, the proposed framework focuses
on learning and updating while migrating the well-known issues of forgetting and overfitting. The framework
comprises three key components designed for learning cross-domain knowledge: the Debiased Base Learning
strategy, Knowledge Acquisition, and Knowledge Update. The superiority of the framework is validated on
mini-ImageNet, CIFAR-100, OfficeHome, and Meta-Dataset. Experiments show that the proposed framework
exhibits the capability to perform in cross-domain situations and also achieves state-of-the-art performance in
the non-cross-domain situation.
. Introduction

Human can continually learn new knowledge from a few examples
ithout compromising existing knowledge. This ability is known as

ew-shot lifelong learning (FSLL) [1,2]. Further, a notable characteristic
f human learning is its dynamic nature, allowing learned knowledge
o be updated throughout the lifespan, as it is encountered in diverse
ituations. For example, a child can learn the concept of a ‘‘dog ’’
rom both cartoons and real-life scenarios at different times, and the
nowledge from both situations enriches their understanding of what a
og is. Traditional machine learning methods, on the other hand, excel
rimarily in pre-defined or similar distributions, proving inadequate for
earning in dynamic environments [3].

Many efforts have been made to mimic the lifelong learning ability
f humans, such as task-incremental lifelong learning (TILL) [4,5]
nd class-incremental lifelong learning (CILL) [6,7]. TILL focuses on
earning multiple tasks by developing separate classifiers for each task.
ILL aims to learn new classes using a single model while avoiding
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forgetting old ones. For practical reasons, CILL has gained more re-
search attention. However, it still relies on ample labeled samples,
which may not always be available in realistic applications. To achieve
the well-known few-shot learning ability [8,9] of humans, few-shot
lifelong learning [2], also known as few-shot class-incremental learning
(FSCIL) [1], is present to learn new classes with a few samples, rep-
resenting a more realistic scenario to CILL. Despite their efforts, FSLL
still lacks human-level performance as it overlooks a crucial underlying
challenge in lifelong learning. That is, humans learn not only from
unseen classes but also from unseen domains. This observation assumes
even greater significance when deploying a model in realistic scenarios. For
example, in clinical applications, a disease diagnosis model should not
only identify new diseases but, more importantly, learn from ever-
growing data on known diseases with diverse imaging conditions. This
is crucial because prioritizing accuracy is more important than the
sheer number of recognized disease classes. Medical data often show a
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Fig. 1. Few-shot Lifelong Learning (FSLL) overlooks humans learn not only from unseen classes but also from unseen domains. In this paper, we conceptualize FSLL as an extension
of the cross-domain problem and fuse cross-domain knowledge into the learning process to facilitate its application in realistic scenarios.
domain gap due to variations in devices or imaging conditions. There-
fore, it is necessary to learn from cross-domain data to enhance the
diagnostic accuracy. Many works have underscored the effectiveness
of leveraging knowledge from multiple domains to enhance model
performance [10–12]. Nonetheless, within the field of FSLL, a gap
persists. Currently, works on FSLL mainly revolve around mitigating
the catastrophic forgetting [13] of old classes. The significance of cross-
domain knowledge tends to be underestimated, and little effort has
been made to investigate it. A most related study is CDFSCIL [14],
which aims to continually learn from different domains. However, they
treat each domain as an independent task and do not consider the
updating of previous knowledge to enhance overall performance. A
more recent work by Yang [15] explores cross-domain TILL, focusing on
task-specific predictions. Nevertheless, they demand a large number of
samples to train a Siamese network for each task, presenting challenges
in realistic applications.

In this paper, we conceptualize FSLL as an extension of the cross-
domain problem, aiming to enhance its applicability in realistic scenar-
ios by fusing cross-domain knowledge into the learning process. Fig. 1
illustrates the advantages of this perspective and its adaptability to a
broader context. Compared with previous works, our setting presents a
unique challenge: the model should continually learn new knowledge
from cross-domain few-shot data and update its existing knowledge
by fusing new knowledge throughout its lifelong learning process. To
this end, we propose a new learning framework, that comprises three
key components to facilitate the learning process: (1) Debiased Base
Learning (DBL): We investigate the impact of both debiased and non-
debiased models in cross-domain FSLL, and propose a debiased base
learning strategy to benefit the learning on new sessions. (2) Knowledge
Acquisition: We propose cross-domain alignment (CDA) and prototype
alignment (PA) to align the potential domain shifts and guarantee min-
imal interference between classes as the number of classes increases.
(3) Knowledge Update (KU): We propose a knowledge update method
that enables continual knowledge enhancement without rehearsal.

Notably, the proposed method is also well-suited to non-cross-
domain scenarios. To compare with previous works, we conduct exper-
iments on two widely used benchmarks: mini-ImageNet [8] and CIFAR-
100 [16]. For the cross-domain scenarios, we evaluate the method using
the cross-domain dataset OfficeHome [17] with the newly introduced
data setting. Additionally, to assess the model under more complex
and diverse conditions, we use the Meta-Dataset [18] to simulate a
larger-scale, real-world scenario. The main contributions are as follows:

• We investigate the significance of cross-domain knowledge in
few-shot lifelong learning (FSLL) and enhance the model’s ability
by fusing cross-domain knowledge into the learning process.
2 
• We propose a new learning framework that focuses on the unique
challenge inherent in cross-domain FSLL. Besides, this paper is the
first to investigate the impact of both debiased and non-debiased
models in FSLL. Correspondingly, we propose an effective debi-
ased base learning strategy to enhance the model’s ability to learn
and adapt in new sessions.

• The proposed learning framework has demonstrated effective-
ness in cross-domain context, achieving an average prediction
accuracy of 55.87%. Significantly, its applicability extends to non-
cross-domain scenarios as well, where it achieves state-of-the-art
results. This underscores the framework’s adaptability across a
wider range of applications.

2. Related work

2.1. Class-incremental lifelong learning

Class-incremental lifelong learning (CILL) [6] aims to learn new
classes continually without forgetting old classes. Studies on CILL
can be mainly divided into two categories: regularization-based meth-
ods [19,20] and replay-based methods [21,22]. Regularization-based
methods aim to prevent forgetting by regularizing the weights [23]
or predictions of a neural network [24]. Replay-based methods aim
to prevent forgetting by storing and retrieving a small number of
samples from previous classes for rehearsal [25,26]. Nevertheless, CILL
usually requires a large number of samples for training, which limits
its applicability in various real-world scenarios and practical use cases.

2.2. Few-shot lifelong learning

Few-shot lifelong learning (FSLL) [2] introduces a more realistic
scenario compared to CILL, which requires learning new classes from
a few labeled samples. Tao et al. [1] first defines the setting of FSLL
and mitigates the forgetting issue by a neural gas network. Subsequent
works have focused on adapting existing methods for CILL to address
the challenges posed by FSLL [2,27,28]. For example, utilizing regu-
larization techniques [29,30] or replaying past data [31,32]. However,
within the context of FSLL, the data imbalance problem led to a severe
decrease in performance. Moreover, CILL and FSLL both concentrate on
continually learning new classes. They are manually constrained learn-
ing in each stage with mutually exclusive classes. Thus, the significance
of cross-domain knowledge in lifelong learning has been overlooked.

2.3. Cross-domain lifelong learning

Currently, the cross-domain learning ability in lifelong learning has
received limited attention. One related research focuses on incremental
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domain adaptation [33,34]. Nevertheless, they fail to consider the
learning of new classes [34], or they involve a single incremental step
from the source domain to the target domain [33]. Another related
research focuses on domain generalization [35], where the model is
expected to learn from multiple domains simultaneously and generalize
to an unseen domain.

A more related study to ours is CDFSCIL [14]. They propose to
learn from cross-domain medical datasets. However, they impose a
constraint where each domain is an independent task, overlooking the
potential benefits that different domains can provide. In contrast, our
work delves into the cross-domain knowledge for each class and we
propose the knowledge acquisition and update. Another recent work by
Yang [15] explores cross-domain task incremental learning, focusing on
predicting within specific tasks. However, it struggles to quickly learn
new tasks, as it requires a larger number of samples to train a new
Siamese network for each new task. In contrast, we present a more
general setting and the proposed method applies to few-shot learning
scenarios.

2.4. Cross-domain few-shot learning

Cross-domain few-shot learning (CD-FSL) [36,37] is a closely related
research topic to ours. CD-FSL focuses on learning a model from one
or more domains and fast adaptation across different domains. Many
efforts have been made in this area. For example, FWT [36] proposes a
feature-wise transformation layer to simulate various distributions and
thus improve the generalization ability to unseen domains. CHEF [38]
builds an ensemble of learners using representation fusion to address
the domain shifts in CD-FSL. Zhao et al. [39] suggest a prototypical
feature alignment to tackle the shift between support and query sam-
ples. Meta-FDMixup [37] proposes to disentangle domain-irrelevant
and domain-specific features to improve the model’s ability to learn
on few-shot samples.

Different from CD-FSL, cross-domain FSLL involves continual learn-
ing across domains and enhances the model’s performance on all do-
mains. Different from Zhao et al. [39], we propose a prototype align-
ment to minimize interference between classes as their number grows.
Compared with Meta-FDMixup [37], we explore debiasing in the con-
text of lifelong learning and propose a debiased base learning strategy
to facilitate debiasing with only a base session available. The proposed
strategy is also adaptable to other lifelong learning studies.

3. Method

3.1. Notation and preliminaries

We aim to learn new knowledge from a sequentially provided
data stream with limited data while preserving old knowledge. New
knowledge involves unseen classes and seen classes with a different
domain. We have a sequence of 𝑆 sessions {(1),(2),… ,(𝑠),… ,(𝑆)},
where (𝑠) ∶= {(𝑥(𝑠)𝑖 , 𝑦(𝑠)𝑖 )}|

(𝑠)
|

𝑖=1 represents the 𝑠th learning session with
|(𝑠)

| training samples. Each 𝑥(𝑠)𝑖 is an input sample belonging to class
𝑦(𝑠)𝑖 ∈ (𝑠), where (𝑠) denotes the label space of session 𝑠. Specifically,
the label spaces (𝑠) may contain known classes with different domain
samples. The first session, (1), serves as the base session, containing a
relatively large number of training classes and samples. We follow the
setting of previous works [40] to organize the data of base session into
many episodes, where each episode is a 𝑐-way 𝑘-shot task. The goal
of the base session is to learn from (1) and distinguish between the
classes in (1). Subsequent new sessions, (𝑠) (𝑠 > 1), arrive in a stream
without rehearsal. These sessions with a size of |(𝑠)

| = 𝑐 ⋅ 𝑘, where
𝑐 = |(𝑠)

| represents the number of classes, and 𝑘 represents the number
of training samples per class (i.e. support data). In a given session 𝑠, we
can only access (𝑠), and the data of previous sessions (from 1 to 𝑠− 1)
are not available. After learning on each session, the learned model is
evaluated on an updated evaluation set ̃(𝑠) ∶= ∪𝑠

𝑖=1
(𝑖) that covers all

seen classes.
3 
Fig. 2. The debiased base learning strategy is aiming to obtain a debiased base model,
parameterized as 𝜃𝑏 = {𝜃 , 𝜑}. We opt for a twin layer over a twin model in practical
implementation. 𝜑 is only used in the base training stage.

3.2. Debiased base learning

In FSLL, the model is expected to learn new knowledge. How-
ever, due to the limited availability of training samples on the base
session, the model inevitably becomes biased toward domain-specific
features [37]. To address this issue, we propose a Debiased Base
Learning (DBL) strategy aimed at eliminating these biased features
and improving the model’s performance in acquiring new knowledge.
Initially, the training objective of the base session is to minimize the
cross-entropy loss 𝐶 𝐸 on all episodes:

E(𝑓𝜃) = 1
𝑁𝑒

∑

𝑖=1..𝑁𝑒

𝑖
𝐶 𝐸 (𝑥, 𝑦; 𝜃), (1)

where 𝑓𝜃 represents the trained model parameterized by 𝜃 and 𝑁𝑒 is
the number of episodes. Eq. (1) ensures an overall good performance
of 𝑓𝜃 on the base session, which learns both domain-invariant and
domain-specific features of input sample 𝑥, denote as (𝑥) and (𝑥),
respectively. However, measuring (𝑥) and (𝑥) is non-trivial when
only base session is available [41].

As the model inevitably learns from (𝑥), it inherently serves as
an indicator of (𝑥). This insight leads us to propose the DBL strat-
egy to develop a debiased base model. Fig. 2 illustrates the learning
framework of the DBL strategy. Initially, we use a twin model (𝑓𝜃 , 𝑓𝜃 )
to realize the learning process, where 𝑓𝜃 serves as an indicator of
(𝑥), and 𝑓𝜃 is responsible for learning (𝑥). In practice, instead of
utilizing the entire model, we find that a fully connected layer can
map localist features to a distributed representation. As a result, we
exclusively consider a twin layer (𝑙𝜑

, 𝑙𝜑
) and shared one 𝑓𝜃 , which

proves to be adequate. The twin layer (𝑙𝜑
, 𝑙𝜑

) is parameterized by 𝜑
and 𝜑 , respectively. We adopt a two-stage learning for DBL. In the
first stage, we train the model on the base session and obtain layer
𝑙𝜑

. In the second stage, we encourage 𝑙𝜑
to capture (𝑥) with the

guidance provided by 𝑙𝜑
. We achieve this purpose by minimizing the

loss function 𝐷 𝑃 to ensure orthogonality between 𝑙𝜑
and 𝑙𝜑

:

𝐷 𝑃 = 1
𝑑

𝑑
∑

𝑖=1
‖𝜑𝑖 𝜑

𝑇
𝑖
‖

2
𝐹 , (2)

where 𝑑 denotes the dimension of the output feature. ‖ ⋅ ‖2𝐹 is the
squared Frobenius norm. The overall optimization objective in base
session can be denoted as:

Ẽ(𝑓𝜃 , 𝑙𝜑
, 𝑙𝜑

, 𝑓𝜃𝑛 ) =
1
𝑁𝑒

∑

𝑖=1..𝑁𝑒

(

𝑖
𝐶 𝐸

(𝑥, 𝑦; 𝜃 , 𝜑 , 𝜃𝑛)

+ I[𝑒𝑝𝑜𝑐 ℎ⩾𝑡]𝑖
𝐶 𝐸

(𝑥, 𝑦; 𝜃 , 𝜑 , 𝜃𝑛)
+ 𝑖

𝐷 𝑃 (𝜑 , 𝜑 )
)

,

(3)

where 𝜃𝑛 is pre-trained in the base session and as the initialization for
the subsequent sessions, we will introduce it in Section 3.3. 𝑡 is the
start epoch of the second stage. The 𝐶 𝐸

and 𝐶 𝐸
are cross-entropy

losses. After completing the base learning, we obtain a feature encoder
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Fig. 3. Overview of the proposed framework. (a) The learning pipeline on the new session. 𝜃𝑏 is trained during the debiased base learning stage and stays frozen during new
sessions. First, we update 𝐀(𝑠) through the knowledge update method to incorporate the average feature embedding from the current session. Second, we fine-tune 𝜃𝑛 through
CDA to align the potential domain shifts. Third, we use PA to minimize interference between classes. (b) The inference pipeline. First, we extract the feature embedding of the
input image through (𝜃𝑏 , 𝜃𝑛). Then, we calculate the cosine similarity between the feature embedding and the prototype of each class to obtain the final prediction result �̂�. (c)
The proposed cross-domain alignment (CDA). For a new sample, we first obtain the average class embedding from memory 𝐀(𝑠−1). We then finetune 𝑓𝜃𝑛 to align domain shifts by
optimizing the loss function 𝐶 𝐷 𝐴. (d) The proposed prototype alignment (PA). We first refine the 𝐏(𝑠) to ensure a set of orthogonal prototypes 𝐏(𝑠)∗. We then align the prototypes
derived from 𝑓𝜃𝑛 (𝐀

(𝑠)) with all refined prototypes using the loss function 𝑃 𝐴.
𝑓𝜃𝑏 = (𝑓𝜃 , 𝑙𝜑
) endowed with domain-invariant knowledge. Note that

𝑙𝜑
is only used in the base training process. The necessity of the

two-stage optimization scheme is analyzed in Section 4.4.

3.3. Knowledge acquisition

In cross-domain FSLL, the model is expected to continually learn
new knowledge from cross-domain few-shot data while ensuring min-
imal interference between classes. To this end, we propose aligning
potential domain shifts by cross-domain alignment and guarantee-
ing minimal interference between classes by prototype alignment. To
achieve an efficient learning process, we utilize a feature memory: 𝐀(𝑠)

to store the average feature embeddings of each class. Each element
𝐚(𝑠) ∈ 𝐀(𝑠) represents the average class embedding in session 𝑠. 𝐀(𝑠)

is updated through the proposed KU. Class prototype 𝐏(𝑠) is obtained
from 𝑓𝜃𝑛 (𝐀

(𝑠)), and used to calculate the cosine similarity between the
feature embedding and the prototype of each class to obtain the final
prediction. An overview of the proposed methods are shown in Fig. 3,
and the learning details are shown in Algorithm 1.

Cross-domain Alignment. Previous works fail to deal with samples
from diverse domains, as they make the representation vulnerable to
distribution shifts [42,43]. We introduce two key aspects to facilitate
the learning from cross-domain knowledge and prevent catastrophic
forgetting. First, we freeze the 𝑓𝜃𝑏 = (𝑓𝜃 , 𝑙𝜑

) for retention of domain-
invariant knowledge and to prevent overfitting to new sessions. Second,
we integrate a learnable mapping with a bias vector to enable the model
to learn new knowledge while dealing with the domain shifts. We
propose the learnable mapping 𝐌 ∶ R𝑑 → R𝑛, where 𝑛 > 𝑑, to enhance
the model’s capability to learn new knowledge. Considering domain
shifts, we incorporate a bias vector 𝐛 ∈ R𝑛 into the learnable mapping,
enabling the alignment of different shifts [44]. In practice, it enables
us to conveniently implement the learnable mapping with a bias vector
using a fully connected layer, denoted as 𝑓𝜃𝑛 , where 𝜃𝑛 = {𝐌,𝐛}. In
each session, if a new sample belongs to a seen class, we first obtain
the average class embedding from memory 𝐀(𝑠−1). Then, we finetune 𝑓
𝜃𝑛

4 
to align potential domain shifts by optimizing the loss function 𝐶 𝐷 𝐴.
Fig. 3(c) illustrates the finetuning process of CDA.

𝐶 𝐷 𝐴 = −
|(𝑠)

|

∑

𝑖=1
I[𝑦𝑖∈̃(𝑠−1)]sim(𝑓𝜃(𝑠)𝑛

(𝑓𝜃𝑏 (𝑥
(𝑠)
𝑖 )), 𝑓𝜃(𝑠)𝑛

(𝐚(𝑠−1)𝑦𝑖
)), (4)

where 𝑓𝜃(𝑠)𝑛
is learnable mapping in session 𝑠. 𝐚(𝑠−1)𝑦𝑖 ∈ 𝐀(𝑠−1) is average

feature embedding of class 𝑦𝑖 in last session 𝑠 − 1. sim(⋅, ⋅) is cosine
similarity.

Prototype Alignment. To minimize interference between classes as
the number of classes increases, we optimize 𝑓𝜃𝑛 to establish a suitable
decision boundary for all seen classes within the current session. An
intuitive solution is to increase the distance between all observed
prototypes:

(𝜃(𝑠)𝑛 ) =
|̃(𝑠)|
∑

𝑖,𝑗=1
𝑖≠𝑗

sim(𝑓𝜃(𝑠)𝑛
(𝐚(𝑠)𝑖 ), 𝑓𝜃(𝑠)𝑛

(𝐚(𝑠)𝑗 )). (5)

However, without the past samples available, Eq. (5) is difficult to
optimize. Therefore, we first refine the 𝐏(𝑠) = 𝑓𝜃(𝑠)𝑛

(𝐀(𝑠)) to ensure a
collection of orthogonal prototypes 𝐏(𝑠)∗, thereby reducing interference
between classes:

𝐼 𝑁 (𝐏(𝑠)) =
|̃(𝑠)|
∑

𝑖=1
sim(𝐩(𝑠)𝑖 ,𝐏(𝑠)∖𝐩(𝑠)𝑖 ) = ‖𝐏(𝑠)𝑇 𝐏(𝑠) − 𝐈‖2𝐹 , (6)

where 𝐏(𝑠) is initial prototype set of session 𝑠. 𝐏(𝑠)∖𝐩(𝑠)𝑖 denotes the set
of all prototypes except 𝑖th prototype. 𝐈 is a identity matrix. Then, we
align the prototypes derived from 𝑓𝜃(𝑠)𝑛

with all refined prototypes 𝐏(𝑠)∗.
Instead of forwarding samples to retrain 𝑓𝜃(𝑠)𝑛

, it is effective by using
𝐀(𝑠), which eliminates the need for sample rehearsal and significantly
reduces the computational cost. 𝜃(𝑠)𝑛 can be optimized via (with update
rate 𝛽):

𝑃 𝐴(𝐏(𝑠)∗, 𝜃(𝑠)𝑛 ) = −
|̃(𝑠)|
∑

𝑖=1
sim(𝐩(𝑠)∗𝑖 , 𝑓𝜃(𝑠)𝑛

(𝐚(𝑠)𝑖 )), (7)

(𝑠)∗ (𝑠) (𝑠)∗ (𝑠)
𝜃𝑛 = 𝜃𝑛 − 𝛽▽𝜃(𝑠)𝑛
𝑃 𝐴(𝐏 , 𝜃𝑛 ). (8)
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Algorithm 1 Learning algorithm for sessions 𝑠 (𝑠 > 1). ̃(𝑠−1) repre-
sents all classes from session 1 to 𝑠 − 1. Superscript (𝑠) denotes the
session index. 𝑟, 𝑘 denote the number of iterations for CDA and PA,
respectively.

Input: session (𝑠) = {(𝑥(𝑠)𝑖 , 𝑦(𝑠)𝑖 )}|
(𝑠)

|

𝑖=1 with label space (𝑠),
model (𝑓𝜃𝑏 , 𝑓𝜃(𝑠−1)𝑛

), feature memory A(𝑠−1), count vector 𝐶 (𝑠−1),
hyper-parameter 𝑟, 𝑘.

Output: model 𝑓𝜃(𝑠)𝑛
, feature memory A(𝑠), prototype set P(𝑠), count

vector 𝐶 (𝑠).
1: for sample 𝑥 in (𝑠) do
2: Feature extraction: x = 𝑓𝜃𝑏 (𝑥)
3: Update number of samples: update 𝑐(𝑠) ⊳ Eq. (11)
4: end for
5: Calculate average feature: a(𝑠) = {a(𝑠)1 ,… , a(𝑠)

|(𝑠)|
}

6: Knowledge Update : update A(𝑠) ⊳ Eq. (9)
7: if (𝑠) ∩ ̃(𝑠−1) ≠ ∅ then
8: for 𝑖 = 1, 2,… , 𝑟 do
9: Cross-domain Alignment : update 𝑓𝜃𝑛 ⊳ Eq. (4)

10: end for
11: end if
12: Refine prototype: update P(𝑠) ⊳ Eq. (6)
13: for 𝑖 = 1, 2,… , 𝑘 do
14: Prototype Alignment : update 𝑓𝜃𝑛 ⊳ Eq. (7)
15: end for
16: return updated 𝑓𝜃(𝑠)𝑛

, A(𝑠), P(𝑠) (for inference), 𝐶 (𝑠)

Fig. 3(d) illustrates the align process of PA. The final prototype set is
determined by passing 𝐀(𝑠) through the updated 𝑓𝜃𝑛 , ensuring minimal
nterference in the current session.

3.4. Knowledge update

Previous works [45] calculated the class embedding using all sam-
les within a single session. In realistic scenarios, however, it is not fea-
ible to obtain all samples of a class simultaneously, and cross-domain
nowledge unfolds continually. Naively averaging features across all
essions can result in shifts in the true embedding, thereby compromis-

ing the acquired knowledge. To this end, we propose a new method
hat enables continual knowledge updating without the need for having
ll data available or data rehearsal. Specifically, embeddings can be
pdated as follows:

𝐀(𝑠) = 𝐶 (𝑠−1)

𝐶 (𝑠)
𝐀(𝑠−1) + 𝑐(𝑠)

𝐶 (𝑠)
𝐚(𝑠), (9)

where 𝐶 (𝑠) ∈ R|̃(𝑠)| is a count vector that counts the number of samples
belonging to each class from session 1 to 𝑠, 𝑐(𝑠) ∈ R|(𝑠)| count the
umber of samples of each class in current session 𝑠. 𝐶 (𝑠) and 𝑐(𝑠) for
lass 𝑘 are defined as:

𝐶 (𝑠)
𝑘 =

𝑠
∑

𝑖=1

|(𝑖)
|

∑

𝑗=1
I[𝑦(𝑖)𝑗 = 𝑘], (10)

𝑐(𝑠)𝑘 =
|(𝑠)

|

∑

𝑖=1
I[𝑦(𝑠)𝑖 = 𝑘]. (11)

Note that 𝐶 (𝑠) is a vector of real numbers and can be updated based
n 𝐶 (𝑠−1) without accessing any information from past samples: 𝐶 (𝑠) =
(𝑠−1) + 𝑐(𝑠).

4. Experiments

To demonstrate the superiority of the proposed method, we con-
ducted experiments in both cross-domain and non-cross-domain sce-
narios. For non-cross-domain scenario, we adhered to the widely-used
5 
Table 1
Statistical metrics for OfficeHome, with four data domains: Art, Clipart, Product, and
Real World.

Domain Mean Standard
deviation

Kurtosis Skewness

Art 122.65 82.65 −1.27 0.10
Clipart 146.70 105.71 −1.59 −0.31
Production 187.67 79.62 0.91 −1.16
Real world 146.56 82.66 −1.22 −0.21

benchmarks and conducted comparisons with state-of-the-art meth-
ds [1,6,25,26,30,40,46–49]. The benchmarks include CIFAR-100 [16]

and mini-ImageNet [8]. For the cross-domain scenario, we evaluated
the proposed method on OfficeHome [17] using a newly introduced
plit setting, which is more applicable in realistic applications. More-

over, we evaluated the proposed method using Meta-Dataset [18] to
simulate a larger-scale, real-world scenario.

4.1. Benchmarks

mini-ImageNet [8] is a subset of ImageNet [50], consisting of 100
classes, with each class comprising 500 training images and 100 testing
images. All the images have a resolution of 84 × 84. CIFAR-100 [16],
on the other hand, comprised of 60,000 images with a resolution of
32 × 32, categorized into 100 distinct classes. To ensure comparability
with FSLL works, we follow the same setting as described in [1]. Both
datasets are divided into a base session and a series of novel sessions.
For mini-ImageNet and CIFAR-100, 60 classes are selected as base
classes. The remaining 40 classes are split into 8 incremental sessions,
with each session containing 5 classes. Within each class, there are 5
training examples, i.e. 5-way 5-shot task.

OfficeHome [17] is a cross-domain object recognition dataset com-
rising 15,500 everyday objects distributed across 65 classes within
 distinct domains: Art, Clipart, Product, and Real World. Art includes
aintings, sketches, and artistic depictions. Clipart consists of clipart
mages, while Product includes images without a background. Real

World encompasses regular images captured with a camera. We chose
the Art, Clipart, and Product domains as the base session, each domain
containing 40 classes. The remaining 25 classes within the three do-

ains, along with the complete Real World domain (65 classes) are
erved as novel knowledge. We set 8 new sessions with 5-way 5-shot
ask. Within each session, 2 classes are chosen from the base classes
ith unseen domain (Real), while 3 classes are selected from the novel

lasses (comprising 4 domains, each with 25 classes). Fig. 4 shows the
data setting and learning scenario. We divided the OfficeHome into
training and testing sets with a ratio of 0.7/0.3. All images have a
resolution of 224 × 224. We present the statistical metrics for 4 data
domains in the OfficeHome dataset, as outlined in Table 1. Mean values
offer insight into the central tendency of the data, representing the
average value across the dataset and indicating the typical magnitude
of the data points. Standard deviation measures the extent of variability
or dispersion of data points from the mean, with a higher standard
deviation suggesting greater variability in the dataset. Kurtosis is a
measure of the shape of the probability distribution. Positive kurtosis
indicates a relatively peaked distribution, while negative kurtosis sug-
gests a flatter distribution. Skewness measures the asymmetry of the
probability distribution. Positive skewness indicates a longer or fatter
tail on the right, while negative skewness suggests a longer or fatter
tail on the left.

Meta-Dataset [18] is a few-shot classification benchmark that
consisting of 10 datasets: ILSVRC-2012 [51], Omniglot [52], FGVC-
Aircraft (Aircraft) [53], CUB-200-2011 (Birds) [54], Describable Tex-
tures (DTD) [55], QuickDraw [56], FGVCx Fungi [57], VGG Flower
58], German Traffic Sign Recognition Benchmark (Traffic Signs) [59],

and MSCOCO [60]. We evaluate FSLL performance in two settings: (1)
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Fig. 4. Data setting and learning scenario: the base session is created with the Art, Clipart, and Product domains, each consisting of 40 selected classes. The remaining 25 classes,
along with the entire Real World domain, represent novel knowledge.
Fig. 5. Comparison results on CIFAR-100, mini-ImageNet, and OfficeHome. In each session, the models are evaluated based on the average accuracy (%) across all the seen classes
̃(𝑠). ‘‘FT-CNN’’ represents fine-tuning with new sessions simply, while ‘‘Joint-CNN’’ indicates joint training involving all observed classes.
We use the first 8 datasets with their official training splits as the base
session. Then, we randomly select 9 tasks from the test split of the
Meta-Dataset to evaluate lifelong learning performance. (2) We use
only the ImageNet subset as the base session and other datasets as
novel sessions to evaluate cross-domain lifelong learning performance.
To yield diverse and realistic tasks, we follow Meta-Dataset [18] to
allow variable task ways and shots across the dataset, with each task
originating from a distinct dataset. Further details on training are
provided in the Training Details.

4.2. Experimental details

Architectures. For the comparison on mini-ImageNet and CIFAR-
100, we adopt two commonly used embedding architectures, ResNet-18
and ResNet-20, which align with the recent works [1,40]. Specifically,
the ResNet-18 is used for mini-ImageNet, while both architectures
are used for CIFAR-100. For OfficeHome, we adopt ResNet-12 for all
experiments. ResNet-12 has four basic blocks, each having three 3 × 3
convolutional layers and one residual operation. Moreover, each block
contains a batch normalization layer and a 0.1 leaky ReLU. The output
dimension for the four blocks has two options: [64, 128, 256, 512] and
[64, 160, 320, 640]. We adopt the latter in the experiment for a fair
comparison with the comparison works [48]. For Meta-Dataset, we use
ResNet-18 to consistent with previous works [61].

Training Details. All models were trained using the SGD optimizer
with a momentum of 0.9. We follow previous works [47] to perform
pre-training on base classes from scratch. The initial learning rate is
0.1 and the decay factor is 0.1. The max training epochs is 200 and
the learning rate decays at [60, 120]. Subsequently, the model is meta-
trained for 100 epochs with an initial learning rate of 0.01 and a
decay factor of 0.1. The learning rate decay at [30, 60]. Each epoch
contains 1000 randomly sampled episodes. In the meta-training stage,
we perform 60-way 5-shot task for mini-ImageNet and CIFAR-100, and
40-way 5-shot task for OfficeHome. For Meta-Dataset, each task has
variable ways and shots to simulate a more realistic scenario. In the first
setting, each novel session is randomly selected from the test split of
6 
the Meta-Dataset, which consists of 10 datasets. In the second setting, 9
datasets are reserved as novel datasets to evaluate cross-domain lifelong
learning performance. Specifically, in each novel session, we add a new
dataset based on the previous session, and the model is assessed on
both the newly added dataset and all prior datasets. This evaluation
process is repeated 100 times, and we report the average performance
for each session. In the training stage, standard data augmentation is
applied, including random crop, horizontal flip, and color jittering.
In the validation stage, the model is evaluated on 600 episodes with
randomly sampled classes and we calculate the average accuracy across
all episodes.

Evaluation Protocol. We report top-1 accuracy (%) for each session
and computed the overall average across all sessions. The performance
of the 𝑖th session is evaluated based on the average accuracy on all the
seen classes ̃(𝑠). Additionally, we include the average accuracy across
all sessions and the performance improvement against each comparison
method.

Experimental Environment. The experiment was performed on
Ubuntu 16.04 with 2 NVIDIA RTX 3090 GPU. The implementation
is based on PyTorch 2.0 and Python 3.10. The training process for
OfficeHome necessitates a GPU memory capacity of 30 GB.

4.3. Main results

Fig. 5 illustrates the visualization comparison results of the methods
across the three main benchmarks. To align with recent works [1,40],
we employ ResNet-18 and ResNet-20 for the comparison on CIFAR-100
and mini-ImageNet. For OfficeHome, we adopt ResNet-12 and report
the average performance of top-1 accuracy in each session. For the
comparison on CIFAR-100 and mini-ImageNet, we exclusively integrate
DBL and PA, as the two benchmarks omit the cross-domain scenario
from consideration. For the comparison on OfficeHome, ‘‘Baseline’’
denotes the model without the proposed training architecture (i.e. twin
layer) and other proposed components. ‘‘Ours’’ denotes the proposed
method under the same architecture. It is evident that merely fine-
tuning with few-shot data from new sessions leads to a notable decline
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Table 2
Comparison with state-of-the-art methods on mini-ImageNet. The backbone is ResNet-18. The best results are highlighted in bold black. The second-best results are highlighted
y underline. ‘‘Impro.’’ indicates the accuracy enhancement of our results compared to the comparison method.

Method Sessions (mini-ImageNet) Average Acc. Impro. ↑

1 2 3 4 5 6 7 8 9

iCaRL [6] 61.31 46.32 42.94 37.63 30.49 24.00 20.89 18.80 17.21 33.29 28.73
EEIL [25] 61.31 46.58 44.00 37.29 33.14 27.12 24.10 21.57 19.58 34.97 27.05
NCM [26] 61.31 47.80 39.31 31.91 25.68 21.35 18.67 17.24 14.17 30.83 31.19
TOPIC [1] 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42 39.64 22.37
F2M [30] 67.28 63.80 60.38 57.06 54.08 51.39 48.82 46.58 44.65 54.89 7.12
IDLVQ-C [46] 64.77 59.87 55.93 52.62 49.88 47.55 44.83 43.14 41.84 51.16 10.85
CEC [47] 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63 57.75 4.27
MetaFSCIL [40] 72.04 67.94 63.77 60.29 57.58 55.16 52.90 50.79 49.19 58.85 3.16
CLOM [62] 73.08 68.09 64.16 60.41 57.41 54.29 51.54 49.37 48.00 58.48 3.53
Replay [45] 71.84 67.12 63.21 59.77 57.01 53.95 51.55 49.52 48.21 58.02 3.99
C-FSCIL [48] 75.32 70.67 65.51 61.18 57.52 53.63 50.85 48.21 45.79 58.74 3.27
BiDistFSCIL [49] 74.65 69.89 65.44 61.76 59.49 56.11 53.28 51.74 50.49 60.32 1.70
Ours (DBL+PA) 77.67 73.11 68.29 63.82 60.32 57.35 54.58 52.41 50.57 62.01 −
Table 3
Comparison with state-of-the-art methods on CIFAR-100, which was performed on ResNet-18 and ResNet-20.

Method Sessions (CIFAR-100 w/ ResNet-18) Average Acc. Impro. ↑

1 2 3 4 5 6 7 8 9

iCaRL [6] 64.10 53.28 41.69 34.13 27.93 25.06 20.41 15.48 13.73 32.87 28.50
EEIL [25] 64.10 53.11 43.71 35.15 28.96 24.98 21.01 17.26 15.85 33.79 27.58
NCM [26] 64.10 53.05 43.96 36.97 31.61 26.73 21.23 16.78 13.54 34.22 27.15
TOPIC [1] 64.10 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37 42.62 18.75
F2M [30] 64.71 62.05 59.01 55.58 52.55 49.96 48.08 46.67 44.67 53.70 7.67
C-FSCIL [48] 56.58 52.32 49.04 45.33 42.64 39.87 37.77 36.02 34.27 43.76 17.61
Ours (DBL+PA) 78.12 72.82 67.91 63.41 59.98 56.38 53.74 51.52 48.44 61.37 −

Method Sessions (CIFAR-100 w/ ResNet-20) Average Acc. Impro. ↑

1 2 3 4 5 6 7 8 9

TOPIC [1] 64.10 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37 42.62 23.38
CEC [47] 73.07 68.88 65.26 61.19 58.09 55.57 55.57 51.34 49.14 59.53 6.47
MetaFSCIL [40] 74.50 70.10 66.84 62.77 59.48 56.52 54.36 52.56 49.97 60.79 5.21
Replay [45] 74.40 70.20 66.54 62.51 59.71 56.58 54.52 52.39 50.14 60.78 5.23
C-FSCIL [48] 75.80 70.11 64.61 59.61 55.96 52.65 50.10 47.49 44.54 57.87 8.13
BiDistFSCIL [49] 79.45 75.20 71.34 67.40 64.50 61.05 58.73 56.73 54.31 65.41 0.59
Ours (DBL+PA) 78.12 76.28 72.32 67.83 64.49 62.63 59.44 57.00 55.91 66.00 −
(
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in accuracy due to catastrophic forgetting (‘‘FT-CNN’’). The upper
bound ‘‘Joint-CNN’’ denotes the model’s maximum performance, as
it is trained involving all observed classes. Notably, the comparison
methods both have a performance decrease from session 1 to 3, while
the proposed method can maintain stable performance and even im-
prove the accuracy on seen classes. This is attributed to learning new
knowledge contributes to an improved performance of the model on
existing knowledge. We conducted tests with different session orders
and found that the session order has an impact on this phenomenon
but will not be substantial.

4.3.1. Comparison on non-cross-domain scenario
In the context of non-cross-domain scenario, the proposed method

xclusively integrates Debiased Base Learning (DBL) and Prototype
lignment (PA), as non-cross-domain scenario omits the cross-domain

learning from consideration. As outlined in Tables 2 and 3, the pro-
osed method with DBL and PA demonstrates superior performance
ver all other methods across the two benchmarks with ResNet-18 and
esNet-20. In particular, the proposed method on ResNet-18 achieves
n average accuracy of 62.01% and 61.37% on mini-ImageNet and
IFAR-100, respectively. The proposed method outperforms the

second-best method by 1.70% and 7.67% on mini-ImageNet and CIFAR-
00, respectively. The results demonstrate that a debiased base model

can improve the performance of learning new knowledge and the
proposed method is capable of learning new knowledge while preserv-
ing old knowledge. Note that the proposed method does not involve
rehearsing old data [45,46,49].
7 
4.3.2. Comparison on cross-domain scenario
For OfficeHome, we first perform meta-learning on the base session

40 classes), and then learn new knowledge in 8 new sessions. Different
rom FSLL, the new knowledge comprises both unseen classes and seen

classes with different domains. As shown in Table 4, we first evaluate
the performance of the proposed method without DBL, which achieves
an average accuracy of 49.58% and brings an improvement of 8.11%
ompared to the baseline. The ‘‘Baseline’’ is the model without the
roposed training architecture and other proposed components. Then,
e incorporate all the proposed components, which achieve an average
ccuracy of 56.41% and bring improvement of 14.94%. Notably, the
omparison method both have a performance decrease from session
 to 3, while the proposed method can maintain stable performance
nd even improves the accuracy on seen classes. This demonstrates
hat the proposed method can learn new knowledge from different
omains to improve the learned knowledge. Moreover, C-FSCIL has a
erformance drop rate of 9.35% from the base session to last session. In
ontrast, the proposed method without and with DBL has a performance
rop rate of 7.36% and 8.82%, respectively. This demonstrates that
he proposed method can alleviate catastrophic forgetting and improve
verall performance by learning new knowledge.

4.3.3. Performance on Meta-Dataset
For the Meta-Dataset, we start by pretraining ResNet-18 on the

base session. Next, we apply meta-learning on the base session and
learn new knowledge across 9 novel sessions. The learning performance
is detailed in Table 5. ‘‘Ours’’ denotes the proposed framework that
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Table 4
Comparison results on OfficeHome. We reported the results of with and without Debiased Base Learning (DBL), respectively. Ours represents the combination of all the proposed
components. Session 1 denotes the base session with 40 classes. ‘‘FT-CNN’’ represents fine-tuning on novel tasks simply, which leads to severe catastrophic forgetting. ‘‘Joint-CNN’’
represents joint training involving all observed classes, which indicates the upper bound of performance.

Method Sessions (OfficeHome) Average Acc.

1 2 3 4 5 6 7 8 9

FT-CNN 54.60 45.96 42.79 41.20 39.96 38.16 34.67 28.97 13.72 37.78
Joint-CNN 62.59 62.11 61.80 61.64 61.41 61.42 61.87 61.87 60.90 61.73
iCaRL [6] 47.63 40.77 31.45 27.27 20.12 16.85 15.88 15.02 14.35 25.48
TOPIC [1] 48.16 43.26 39.15 35.30 33.79 26.91 21.70 19.12 17.48 31.65
C-FSCIL [48] 47.70 47.70 43.75 42.19 42.27 40.74 40.29 39.20 38.35 42.47
Baseline 47.15 45.83 43.27 42.39 41.37 39.62 39.10 38.10 36.38 41.47
Ours w/o DBL 51.79 53.12 51.43 51.19 50.59 49.11 48.25 46.34 44.43 49.58
Ours 59.47 60.33 60.37 58.10 56.52 55.28 54.50 52.45 50.65 56.41
Table 5
Few-shot lifelong learning on Meta-Dataset tasks. In the first group, the base session is trained on the first 8 datasets of the Meta-Dataset (i.e., excluding Traffic Signs and MSCOCO),
with each novel session selected from the test split of the Meta-Dataset. In the second group, the base session is trained on the ImageNet subset, and each novel session introduces
a new dataset, building on the previous session.

Method Sessions (Meta-Dataset) Average Acc.

1 2 3 4 5 6 7 8 9

FSMBa [61] 54.87 52.81 52.31 51.39 51.24 50.39 50.37 49.01 48.98 51.26
C-FSCIL [48] 57.63 55.78 54.17 53.88 52.28 52.12 51.68 50.98 48.37 52.99
Ours w/o DBL 57.82 55.74 56.04 56.08 55.85 55.76 54.57 52.76 51.29 55.10
Ours 58.74 57.69 57.31 57.30 56.54 55.68 54.04 53.49 50.75 55.73

FSMBa [61] 44.59 44.27 42.95 42.81 42.58 42.30 41.16 40.44 37.90 42.11
C-FSCIL [48] 51.94 49.50 47.03 46.23 45.85 45.75 43.48 41.38 40.12 45.70
Ours w/o DBL 49.58 49.00 47.71 47.39 46.83 46.55 46.51 45.65 43.71 46.99
Ours 50.58 50.38 49.44 48.15 48.05 47.15 46.40 45.40 44.70 47.81

a Indicates reimplementation.
Table 6
Out-of-domain few-shot lifelong learning performance on Meta-Dataset, MINIST, and
CIFAR-10/-100.

Method Signs MSCOCO MNIST CIFAR-10 CIFAR-100

FSMB* [61] 45.46 45.14 82.92 61.29 47.34
C-FSCIL [48] 46.53 54.40 87.82 69.29 56.55
Ours 49.15 58.34 93.75 75.77 63.32

incorporates all the proposed components. In the first group of the
table, the base session is trained on the first 8 datasets with their official
training splits, while the 9 novel sessions are selected from the test split
of the Meta-Dataset. Note that the classes and samples in the test split
are excluded from the training split. As shown in the table, our method
achieves an average accuracy of 55.73%. In the second group of the
table, the base session is trained on the ImageNet subset, and each novel
session introduces a new dataset derived from the previous session. In
other words, in each novel session, the model is evaluated on both the
newly added dataset and all prior datasets, presenting a cross-domain
challenge. As shown in the table, our method demonstrates superior
cross-domain transferability, whereas comparison methods exhibit a
more significant performance decline as sessions progress.

4.3.4. Out-of-domain performance
To evaluate the out-of-domain FSLL performance of the proposed

method, we train the model on the official training splits of the first 8
datasets and evaluate on the last 2 datasets of Meta-Dataset (i.e., Traffic
Signs and MSCOCO). Moreover, we follow [63] to evaluate three
external benchmarks: MNIST, CIFAR-10, and CIFAR-100. The perfor-
mance is shown in Table 6. We report the average accuracy across 9
novel tasks for each dataset. The proposed method shows a significant
improvement over the comparison methods.

4.3.5. Class-wise performance analysis
Fig. 6 shows the class-wise performance analysis on OfficeHome.

We present the performance in the final session, wherein the model is
8 
Fig. 6. Class-wise performance on OfficeHome. (a) The confusion matrix of prediction
results with target labels. (b) Cosine similarity between the prototypes. The red cross
splits the base session (40 classes) and the novel sessions.

required to predict all previously encountered classes. The confusion
matrix Fig. 6(a) highlights a noticeable concentration of values along
the diagonal, indicating that the proposed method can mitigate forget-
ting. Furthermore, we present the cosine similarity Fig. 6(b) between
the prototypes. Notably, the similarity within the same class surpasses
that of different classes. This observation demonstrates the model
can effectively learn classes while maintaining minimal interference
between each class.

4.4. Ablation analysis

Table 7 reports the ablation results on OfficeHome. The first row
of the first and second groups represents the baseline model without
and with the architecture (i.e., twin layer) of the proposed method,
respectively. Based on the two baseline models, the knowledge update
(KU) method improves the average accuracy by 0.42% and 0.49%,
respectively. The second and third groups represent the model without
and with debiased base learning (DBL) strategy, respectively.

We can observe that the DBL improves the overall accuracy by
4.51%, which shows that learning new knowledge can benefit from
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Table 7
Ablation study on OfficeHome. We evaluate the effectiveness of the Debiased Base Learning (DBL) strategy, Cross-domain Alignment (CDA), Prototype Alignment (PA), and
Knowledge Update (KU).

DBL CDA KU PA Sessions Average
Acc.

1 2 3 4 5 6 7 8 9

47.15 45.83 43.27 42.39 41.37 39.62 39.10 38.10 36.38 41.47
✓ 47.15 45.92 43.45 42.80 41.76 40.03 39.66 38.53 37.74 41.89

48.16 47.57 43.92 43.46 43.09 41.93 40.89 39.70 38.04 42.97
✓ 48.16 47.57 44.92 44.37 44.02 43.19 42.41 40.59 38.89 43.79

✓ 48.16 47.92 44.18 43.67 43.75 42.34 41.74 40.48 38.93 43.46
✓ 51.79 52.99 50.95 50.08 49.14 48.18 47.73 46.16 44.06 49.01

✓ ✓ 48.16 47.92 45.10 44.94 44.77 43.94 42.89 40.98 39.44 44.24
✓ ✓ 51.79 53.12 51.26 50.41 49.57 48.10 47.73 46.34 44.67 49.22

✓ ✓ 51.79 52.99 51.56 51.03 49.96 48.88 47.99 46.27 44.40 49.43
✓ ✓ ✓ 51.79 53.12 51.43 51.19 50.59 49.11 48.25 46.34 44.43 49.58

✓ 55.15 54.12 49.09 48.23 47.54 45.31 44.49 42.65 40.73 47.48
✓ ✓ 55.15 54.12 50.09 49.18 47.89 46.24 45.31 43.36 42.02 48.15
✓ ✓ 55.15 54.25 49.22 48.40 47.97 45.94 45.35 43.54 41.58 47.93
✓ ✓ 59.47 60.11 58.94 57.61 56.48 54.58 53.91 51.81 49.35 55.81
✓ ✓ ✓ 55.15 54.25 50.22 49.55 48.32 47.77 45.94 44.32 42.70 48.69
✓ ✓ ✓ 59.47 60.33 59.11 57.89 56.60 54.65 53.79 51.78 49.39 55.89
✓ ✓ ✓ 59.47 60.11 60.24 58.14 56.48 55.43 54.35 52.20 50.27 56.30
✓ ✓ ✓ ✓ 59.47 60.33 60.37 58.10 56.52 55.28 54.50 52.45 50.65 56.41
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domain-invariant features. The effectiveness of PA is also noticeable,
which improves the overall accuracy by 6.04%. During the learning
rocess, the superiority of PA becomes progressively evident. It high-

lights the ability of PA to learn new knowledge while minimizing
interference between classes. We can observe that the DBL exhibits
a higher average accuracy throughout each session while showing a
larger performance decline in the new sessions. This can be attributed
to the fact that domain-invariant features can be transferred to the
new task more effectively, which consequently presents the challenge
of discriminating among the novel classes. This issue can be mitigated
through the implementation of PA. With PA, the drop rate of the aver-
age accuracy in the new sessions is reduced from 14.42% to 10.12%.
This indicates that the PA can alleviate the performance decline in new
sessions. With all components integrates, the proposed method achieves
a minimal performance decline of 8.82%. Note that the effectiveness of
KU is more evident when relevant knowledge is involved. We will delve
into this aspect further in the subsequent analysis.

4.4.1. Debiased base learning
Fig. 7 illustrates the effectiveness of DBL. We evaluate the base

and novel accuracy in each session, respectively. The base accuracy is
calculated on the predefined 40 base classes, and the novel accuracy
is calculated on all seen novel classes in the current session. DBL
improves the accuracy of base classes by 7.03%, and of novel classes
by 9.39%. This demonstrates that a debiased base model can enhance
the performance of learning new knowledge.

Fig. 8 shows the ablation study on the start epoch 𝑡 of the second
tage of DBL. Each epoch contains 1000 episodes which are randomly
ampled from the training set. We can observe that there is a large
mprovement from 𝑡 = 0 to 𝑡 = 1, and the performance is stable when
 > 5. Note that the choice of parameter 𝑡 should take into account the
pisodes within each epoch and the characteristics of the base training
et.
Twin model. We conducted experiments with varying degrees of

training for the twin model. The average accuracy on all sessions is
shown in Table 8. We chose the blocks from deep to shallow of the
ResNet-12 as the twin model and evaluated the effects. We find that the
performance of using the FC layer as the twin model is comparable to
that of using the FC layer together with Blocks 4 and 3. Moreover, when
using the whole network as the twin model, it requires more training
epochs to achieve comparable performance. As a result, we adopt the

FC layer as our twin model in all experiments for efficiency.
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Fig. 7. Performance on base and novel classes. The base accuracy is evaluated on
he predefined 40 base classes, and the novel accuracy is evaluated on all seen novel
lasses. The ‘‘Baseline’’ represents the model aligned with the architecture but without
BL.

Fig. 8. The ablation study on the start epoch 𝑡 of the second stage of DBL. We report
the average accuracy (%) across all sessions.

Two-stage optimization. We use two-stage optimization for DBL.
When optimizing twin layer (𝑙𝜑

, 𝑙𝜑
) simultaneously, there is no as-

surance that 𝑙𝜑
will adaptively learn the domain-invariant features.

Therefore, we first optimize 𝑙𝜑
and move 𝑙𝜑

away from 𝑙𝜑
. Then,

e optimize 𝑙𝜑
to learn the domain-invariant features. We evaluate the

ne- and two-stage optimization, respectively. The results are shown in
Fig. 9. DBL with two-stage training exhibits a higher average accuracy
but shows a larger performance decline in the new sessions. This can
be attributed to the fact that domain-invariant features are effective
in transferring to new domains, but also presents the challenge of
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Table 8
The ablation study of the twin model. Block 1–4 represents the basic block in the
ResNet. The checkmark indicates that this module is part of the twin model.

ResNet-12 FC layer Average
Acc.

Block 1 Block 2 Block 3 Block 4
✓ 47.48

✓ ✓ 47.51
✓ ✓ ✓ 47.29

✓ ✓ ✓ ✓ 46.97
✓ ✓ ✓ ✓ ✓ 46.06

Fig. 9. Performance analysis of the one-stage and two-stage DBL strategies. We present
the performance (a) with and (b) without PA.

discriminating among new classes. This can be mitigated through PA.
Furthermore, we conduct the ablation study on the start epoch 𝑡 of the
second stage of DBL. We observed a large improvement from 𝑡 = 0 to
𝑡 = 1, and the performance is stable when 𝑡 > 5.

4.4.2. Few-shot lifelong learning
The study of the iteration number 𝑟 for cross-domain alignment

(CDA) and 𝑘 for prototype alignment (PA) is presented in Fig. 10. The
evaluation on 𝑟 is performed under the following settings: (𝑖) the start
epoch 𝑡 of DBL is set at 5, (𝑖𝑖) the iteration number 𝑘 of PA is set
at 50, and (𝑖𝑖𝑖) in conjunction with KU. The optimizer is SGD with a
learning rate of 0.1. We noticed an increase in average accuracy as
the value of 𝑟 increases from 1 to 8, while the rate of improvement
diminishes when 𝑟 is larger than 10. This phenomenon can be attributed
to the model being likely to overfit the target domain as the iteration
number becomes large. Therefore, we set 𝑟 = 8 in our experiments.
The evaluation on 𝑘 is performed under the following settings: (𝑖) the
start epoch 𝑡 of DBL is set at 5, (𝑖𝑖) the iteration number 𝑟 of CDA is
set at 8, and (𝑖𝑖𝑖) in conjunction with KU. We can observe that the
model performs best at around 𝑘 = 50. Fig. 11 illustrates the iteration
sensitivity of the 𝑟 and 𝑘. We can observe that the model achieves
stable performance when 𝑘 at the range of 40∼50. When 𝑘 is smaller
(<25), the model needs a larger 𝑟 to achieve comparable performance.
10 
Fig. 10. Performance of CDA and PA in each session. (a) CDA with different iteration
𝑟. (b) PA with different iteration 𝑘.

Fig. 11. Ablation study of the iteration number 𝑟 in Cross-domain Alignment (CDA) and
the iteration number 𝑘 in Prototype Alignment (PA). We report the average accuracy
(%) across all sessions.

In our experiment, we set these two hyperparameters to 8 and 50,
respectively.

Fig. 12 illustrates the effectiveness of the knowledge update (KU).
The increasing episode (𝑒) represents the model encounters seen classes
but in an unseen domain. From (a), it is evident that the average ac-
curacy improves with the increasing number of episodes. This demon-
strates that KU can effectively update the acquired knowledge and fully
leverage the limited data. Moreover, we compare the performance of
KU under two baselines, i.e., with and without DBL. From (b), we can
observe that KU is effective in both baselines and the performance of
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Fig. 12. (a) With increased episodes 𝑒, the performance is gradually increased. (b) With
episode fix to 1, the impact of KU under two baselines, i.e., with (red) and without
(blue) DBL. (c) KU performs with CDA (top) and PA (bottom), respectively.

Fig. 13. The improvement made by knowledge update using various domain data from
the same class. (a) and (b) represent the performance enhancement of the base (Alarm
clock and Glasses) and novel (Printer and Paper clip) classes, respectively.

KU with DBL is consistently higher than that without DBL. Finally, we
evaluate the performance of KU with CDA and PA. From (c), we can
observe that without KU, there is a noticeable decline in performance
as the number of episode increase. This is mainly due to the feature
shift, which is effectively mitigated by the implementation of KU.

To further assess the impact of cross-domain knowledge in FSLL,
we evaluate the performance enhancement on base and novel classes,
respectively. We perform the knowledge update by using different do-
main data from the same class. We show the performance improvement
of the base and novel classes in Fig. 13. The observed improvements are
noticeable in both base and novel classes, suggesting that cross-domain
knowledge contributes to an overall performance boost for previously
encountered classes. Specifically, we report two classes from the base
classes (Alarm clock and Glasses) and two classes from the novel classes
(Printer and Paper clip). The dashed line represents the performance of
the base model. The solid line represents the performance of each class
with the knowledge update. We can observe that the performance in
both base and novel classes can be enhanced by learning knowledge
from a different domain. Moreover, the novel classes have a lower start
performance because the model has not learned the knowledge of the
novel classes. However, the performance of the novel classes can be
improved by learning the knowledge from the different domains.

4.5. Computation cost

Compared to the baseline network, Algorithm 1 incurs additional
computational costs distributed among the three proposed components.
11 
Table 9
The computation time of each components. The computation time of each component.
We report the total time required for a complete session of learning.

Dataset KU CDA PA Session

mini-ImageNet – – 0.2 ms 2 s
CIFAR-100 – – 0.2 ms 2 s
OfficeHome 0.1 ms 0.5 ms 0.2 ms 2 s
Meta-Dataset 0.8 ms 0.5 ms 0.2 ms 2 s

Specifically, during each novel session, the KU module requires |(𝑠)|×
(3𝑛 + 2) operations, resulting in a computational complexity of 𝑂(𝑛 ⋅
|(𝑠)|), where 𝑛 is the dimension of the feature vector. The CDA module
performs 𝑟 updates, with computational cost arising from the forward
inference of 𝑓𝜃𝑛 and the similarity computation. We denote the cost
of forward inference as 𝑂(𝑓 ) and the similarity computation as 𝑂(𝑑).
Therefore, the computational cost of CDA is 𝑂(𝑟 ⋅ |(𝑠)

| ⋅𝑓 ⋅𝑑). Note that
the inference in 𝑓𝜃𝑏 is part of the baseline network and is not included
in the computation cost of CDA. The PA module requires 𝑘 updates,
where each update involves finetuning the 𝑓𝜃𝑛 for |(𝑠)| times. The
computational cost of 𝑃 𝐴 is 𝑂(|(𝑠)|⋅𝑓 ⋅𝑛), so the overall computational
cost for updating 𝑓𝜃𝑛 is (𝑘 ⋅ |(𝑠)| ⋅ 𝑓 ⋅ 𝑛). The computation time of each
component is shown in Table 9, which reports the total time required
for a complete session of learning. The experiments were conducted
on an Intel Xeon Gold 6253 W CPU and an NVIDIA RTX 3090 GPU.
Specifically, the Meta-Dataset varies in both the number of ways and
shots for each task, so we report the average computational cost across
repeated experiments.

5. Conclusions and discussions

In this paper, we investigate the effects of cross-domain knowledge
in few-shot lifelong learning (FSLL) and correspondingly propose a
new learning framework. The proposed framework equips the abil-
ity to continually learn in the cross-domain scenario while migrating
forgetting and overfitting. Moreover, it also achieves state-of-the-art
performance in non-cross-domain situations. Cross-domain FSLL has
promising application value in real-world applications such as user
authentication [64–67], which often face challenges due to diverse data
sources, including variations across devices and environments [68,69].
The proposed framework offers three primary benefits for user authen-
tication applications. First, it enables continual learning, allowing the
system to adapt and improve itself over time with new data. Second,
the framework incorporates cross-domain knowledge, enhancing the
model’s ability to generalize across various authentication scenarios.
Third, it effectively handles few-shot data, ensuring robust performance
even with limited training data.

Nonetheless, several potential challenges may arise when imple-
mented in dynamic real-world scenarios. First, we pre-train the model
in the base session to enhance knowledge transfer and its ability
to prevent forgetting. However, the data from realistic downstream
tasks exacerbates the risk of overfitting when continually updating
the model, posing a challenge in maintaining the proposed model’s
generalizability for future tasks. Second, the proposed framework re-
tains acquired knowledge in a memory buffer. In real-world scenarios,
data streams often have greater complexity. Consequently, another
challenge lies in updating, augmenting, and compressing the memory
bank to align with the evolving learning scenarios dynamically. Third,
the proposed cross-domain alignment mainly deals with the cross-
domain issue within the image domain, which is short at learning across
a larger domain gap, like the image-to-text or point cloud. For our
future work, we aim to improve the robustness and practical relevance
of our research by exploring additional real-world applications.
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