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Purpose: Accurate and robust segmentation of the prostate from magnetic resonance (MR) images
is extensively applied in many clinical applications in prostate cancer diagnosis and treatment. The
purpose of this study is the development of a robust interactive segmentation method for accurate
segmentation of the prostate from MR images.

Methods: We propose an interactive segmentation method based on a graph convolutional network
(GCN) to refine the automatically segmented results. An atrous multiscale convolutional neural net-
work (CNN) encoder is proposed to learn representative features to obtain accurate segmentations.
Based on the multiscale feature, a GCN block is presented to predict the prostate contour in both
automatic and interactive manners. To preserve the prostate boundary details and effectively train the
GCN, a contour matching loss is proposed. The performance of the proposed algorithm was evalu-
ated on 41 in-house MR subjects and 30 PROMISE12 test subjects.

Result: The proposed method yields mean Dice similarity coefficients of 93.8 £ 1.2% and
94.4 £+ 1.0% on our in-house and PROMISE12 datasets, respectively. The experimental results show
that the proposed method outperforms several state-of-the-art segmentation methods.

Conclusion: The proposed interactive segmentation method based on the GCN can accurately seg-
ment the prostate from MR images. Our method has a variety of applications in prostate cancer imag-

ing. © 2020 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.14327]
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1. INTRODUCTION

Prostate cancer is one of the most common types of cancer
among American men. In 2020, it was estimated that there
were 191,930 new cases of prostate cancer, and 33,330 deaths
from prostate cancer in the United States." Magnetic reso-
nance imaging (MRI) is being increasingly used for prostate
cancer diagnosis and treatment planning.>” Accurate seg-
mentation of the prostate from MR images has many applica-
tions in the management of this disease. Manual
segmentation of each prostate image is a time-consuming and
subjective task. The accuracy of the segmentation depends on
the experiences of the radiologists and on the intra-reader and
inter-reader variations. Therefore, numerous studies have
focused on prostate MR image segmentation in recent
years.*°

Deep-learning-based automatic segmentation methods
have achieved improved medical image segmentation
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performance.*”™® However, it is difficult to develop a fully
automatic prostate segmentation method that can address var-
ious issues, such as cases with low-contrast prostate bound-
aries, large shape variations, and variations of the appearance
pattern in basal and apical regions. Therefore, these auto-
matic segmentation methods are not adequately accurate and
robust for routine clinical use. To solve this problem, user
interventions are often needed to refine the automatic seg-
mentation issues.

To-this-date, many interactive image segmentation meth-
ods have been proposed.'”'* In this study, we propose an
interactive segmentation method based on a graph convolu-
tional network (GCN) for prostate on MR images. The inter-
activity of the proposed method is similar to GrabCut,'
wherein a bounding box is drawn around the object to obtain
an initial segmentation. GrabCut further improves the initial
segmentation by drawing points on background and fore-
ground regions, respectively. In contrast, we present a
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different interactive scheme that is better suited for a GCN-
based algorithm by dragging a point on the prostate contour
to the appropriate position. This manner can reduce user
interactions during segmentation refinement to achieve
higher accuracy. The user can intervene whenever an inaccu-
rate segmentation occurs by correcting the erroneously pre-
dicted points. The proposed method continues its prediction
based on the corrections.

In this study, we consider prostate segmentation as a
regression problem, whereby the locations of all the vertices/
points of the prostate contour are predicted simultaneously.
These vertices are represented as a graph with a fixed topol-
ogy. We perform predictions of these vertices based on the
use of a GCN that can be optimized for interactive segmenta-
tion.

To the best of our knowledge, this is the first study that
has explored GCN-based interactive methods for prostate
MR segmentation. The contributions of the proposed method
are as follows. (a) A GCN is adopted to extract prostate con-
tours from MR images automatically. The GCN is also used
in an interactive manner to further improve the accuracy by
correcting the points on the prostate contour. (b) We propose
an atrous multiscale convolutional neural network encoder to
obtain representative features for prostate from MR images
that could help GCN to generate more accurate prostate con-
tours. (c) The proposed method outperforms several state-of-
the-art methods on both PROMISEI2 dataset and in-house
dataset.

The remainder of the study is organized as follows. In Sec-
tion 2, related works are reviewed. In Section 3, we introduce
the GCN-based interactive prostate segmentation method fol-
lowed by the details of each part. In Section 4, we describe
the evaluations based on the experimental results. In Sec-
tion 5, we summarize the proposed method and outline the
study’s conclusions.

2. RELATED WORKS

Interactive segmentation methods provide an effective way
wherein a human and a machine interact. According to the
interaction type, interactive segmentation methods can be
classified into three categories, including the bounding box,
click/scribble, and contour-interaction-based methods.

In bounding-box-based methods, a bounding box is sup-
posed to be placed around a target object to present the
object’s range. Lempitsky'> mentioned that the bounding box
is not only used to exclude the background information, but
also to prevent the segmentation from shrinking. MILCut'®
proposed the use of a sweeping-line strategy to perform seg-
mentation tasks based on the bounding box provided by users
that converts the interactive image segmentation into a multi-
ple-instance learning problem. Rother' proposed a GrabCut
method for interactive object segmentation based on the
graph-cut algorithm.'” GrabCut only requires the user to draw
a bounding box loosely around the object. Wang'? presented
an interactive medical image segmentation method based on
a bounding box that adds an image-specific adaptation model
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for CNNs to obtain accurate segmentation. However, the seg-
mentation results of these bounding box-based interactive
methods cannot be further refined by users.

In the cases of click/scribble-based methods, users usually
draw scribbles/points on foreground and background regions.
Interactive graph cuts'® is a seminal scribble-based interactive
segmentation method that marks several seed pixels that
belong to the background or foreground. It then uses a max-
flow/min-cut algorithm to provide a global optimal solution
for segmentation. Papadopoulos'® and Maninis *° proposed a
clicking strategy to replace the traditional bounding box
method that lets users to click on the top, bottom, left, and
right-most points of an object to achieve the desired segmen-
tation results. In the field of medical image segmentation,
Wang?' proposed an interactive method for two-dimensional
(2D) and three-dimensional (3D) medical image segmenta-
tions. A CNN is used to obtain an initial automatic segmenta-
tion on which user click/scribble interactions were added to
indicate mis-segmentations to refine the results. Although
these click/scribble-based interactive methods can obtain
more accurate segmentation results by drawing scribbles or
seed points multiple times on the foreground and background
regions, these methods cannot obtain accurate and smooth
object boundaries. In addition, the segmentation boundary
cannot be fine-tuned in a click/scribble interactive manner.

Contour interaction methods are usually used to present
an object boundary and refine it. Castrejon®> and Acuna®
proposed a contour-interaction-based segmentation method.
They considered the segmentation task as a contour predic-
tion problem that predicted the vertices of a contour that out-
lined the object. Ling®* proposed an interactive segmentation
method to predict all the vertices of the object’s contour
based on a GCN. The aforementioned methods could yield
promising segmentation results. However, there is no method
that combines deep learning and user interaction in a seam-
less way that is trained end-to-end. In addition, the methods
ignore the multiscale feature that limits the representative fea-
ture extraction capability and restricts the segmentation per-
formance.

In this study, we propose a GCN based interactive seg-
mentation method to segment the prostate. GCN is a deep-
learning method that handles non-Euclidean data within the
graph domain. Therefore, it is suitable for contour-interac-
tion-based segmentation methods. Because of convincing
performance and high interpretability, GCN has been receiv-
ing increased attention recently. Motivated by the above
descriptions, an interactive method is proposed for prostate
segmentation by combining GCN and user interactions that
are trained end-to-end.

3. MATERIALS AND METHODS

In this study, we propose an interactive MR image seg-
mentation algorithm for prostate based on GCN. The algo-
rithm accepts user interactions based on the interaction points
(nodes or vertices) on the prostate contour. The proposed
method consists of three parts, namely, the CNN feature
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encoder, automatic GCN module, and interactive GCN mod-
ule.

In this study, we assume that the prostate shape can be
accurately represented by N interaction points (also called
vertices). The neighboring points/vertices are connected with
spline curves to form the prostate contour. The locations of
the vertices are considered as random variables and can be
predicted based on the GCN in the non-Euclidean domain.

The GCN takes the output feature from the last convolu-
tional layer of the CNN encoder applied on the cropped
image as its input. We denote the CNN encoder feature as
X.nm- To observe the contour of prostate, a contour block is
proposed. The output feature of the contour block is concate-
nated with X, to produce an enhanced feature X,z

The enhanced feature is followed by four 3 x 3 convolu-
tional layers that aim to form a GCN feature X,,. To encode
the locations of the interaction vertices, the initial coordinates
of the interaction vertices are concatenated with the GCN fea-
ture to form a location-aware feature X,¢,z,.. The feature
Xqenroc 18 fed to a GCN block to predict the locations of the
vertices that could obtain the output of the automatic GCN
module. The generation of the location-aware feature Xgcuz.¢
is shown in Fig. 1.

The interactive GCN module follows the automatic GCN
module. The interactive GCN aims to improve the segmenta-
tion accuracy by introducing user interactions. The users
select inaccurate interaction points and drag them to the cor-
rect positions. The shifts of these points are concatenated
with feature Xgcnoe to produce a shift-encoded feature
Xqenroes- The feature Xgenrocs is fed into the GCN block to
obtain the shifts of k neighboring vertices of the current inter-
action point. Fig. 2 presents an overview of the proposed
method.

3.A. CNN feature encoder

Owing to the use of the repeated downsampling opera-
tions in traditional CNN networks, it is difficult to obtain an
adequately large output feature resolution for the image seg-
mentation task.”>*® ResNet %’ is a commonly used backbone
network in the semantic segmentation domain. However, the
empirical receptive field of ResNet is smaller than the input
image. In addition, it lacks multiscale features in the output
feature map that is very important for the representation of
the objects. To address these problems, an atrous/dilated

X ennEnh Yy 3x3 conv x4 @ concatenation
x512 ¢28x28x256
Reshape &
Sampling
¥ 40x256
Initial \{er‘uces @ Xporor
coordinates 40x2 40x258

Fic. 1. The generation of the location-aware feature X,,0.. The number of
vertices is 40 in our method. [Color figure can be viewed at wileyonlinelibra
ry.com]
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multiscale CNN feature encoder is proposed. A dilated con-
volutional operation®” and a spatial pyramidal pooling mod-
ule®® are introduced in ResNet to obtain multiscale features.
In addition, a skip-layer architecture is used to obtain an
effective output resolution and a multiscale feature. The
dilated convolution aims to extract multiscale features and
increase the receptive field of the kernel when the network
depth increases. Meanwhile, it does not introduce any extra
parameters into the network. The spatial pyramid pooling
module can obtain both local information and global context
information. At the same time, the skip-layers concatenate
different feature levels that can incorporate both shallow and
deep-layer feature maps. By combining dilated convolutions,
spatial pyramid pooling module, and the skip-layer architec-
ture, the proposed CNN feature encoder can capture high-
level semantic information, low-level detailed information,
and multiscale features.

In the proposed multiscale CNN encoder, we removed first
the fully connected layers and the last average pooling layer
of ResNet-101. In addition, the convolutional operations in
the last two blocks of ResNet-101 were replaced by dilation
convolution with two and four dilated rates respectively. A
3 x 3 convolution layer was applied after four layers, includ-
ing the first 7 x 7 convolution layer, the first residual layer,
the second residual layer, and the last residual layer with
dilated convolution. To obtain multiscale spatial features, the
output features of four 3 x 3 convolutions were concate-
nated. Three bilinear upsampling operations were performed
to ensure that they achieve the same spatial sizes. The con-
catenated features were then fed to two consecutive 3 x 3
convolution layers. Global prior representations have proven
to be effective ways to produce high-quality results on object
instance segmentations. Therefore, a pyramid scene parsing
network (PSPNet)”® was adopted as a final pixel-level CNN
feature extractor. The proposed dilated multiscale CNN enco-
der is shown in Fig. 3.

3.B. Automatic GCN module

Automatic GCN module consists of two blocks, namely,
contour and GCN blocks.

3.B.1. Contour block

The CNN feature does not encode boundary information
explicitly. It is difficult to be directly used to extract the pros-
tate boundary. Therefore, the feature X, obtained from the
CNN encoder cannot allow the direct visualization of the
prostate contour. To solve this problem, a contour block is
proposed to help the model visualize the prostate contour.
The contour block is trained to predict the probability of exis-
tence of a prostate contour that consists of a 3 x 3 convolu-
tional layer and a fully connected layer. A cross entropy loss
is used to train the contour block. The output of the contour
block is a 2 x 28 x 28 feature that encodes the boundary
features of the prostate. The visualization of the contour
block is shown in Fig. 2.
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FiG. 2. Overview of the proposed graph convolutional network (GCN) segmentation method. The proposed method consists of three parts: (a) CNN feature enco-
der, (b) automatic GCN module, and (c) interactive GCN module. In the interactive GCN module, the users select interaction points (e.g. yellow vertex) and drag
them to their correct locations. Subsequently, the new locations of 2k neighboring vertices (k neighbors on either side) will be predicted. The green arrow indi-
cates the movement of the vertex from the current location to a new location. [Color figure can be viewed at wileyonlinelibrary.com]

3.B.2. GCN block

While the CNN has achieved great success in processing
Euclidean data, it has been associated with an increasing
number of tasks whereby data are non-uniformly sampled in
the non-Euclidean domain, and are presented as graphs with
complex relationships between data. It is a major challenge
for CNN-based methods to handle the complexity of graph
data.”® The data (location of the vertex) used in our method
are graph data. Therefore, the GCN is adopted (instead of
CNN-based methods) for prostate segmentation.

In this study, a graph G = (V, ) is defined on a prostate
MR image that consists of vertices V' and edges &.
V = {v,i = 1,2,...,N} is the set of N vertices in the
graph. Let v; = (x;,y;) denote the location of the i-th interac-
tion-point. £ = {¢;,j = 1,2,...,M} is the set of M edges
with each of its elements connecting two vertices. This graph
structure defines how the information propagates in the
GCN. The nodes of the GCN are initialized at a static central
position in the cropped prostate image. The aim of the GCN
is to predict the offsets for all points that could be used to
shift these points to the true prostate contour locations.

In the GCN model, X) € RV* s the output feature of
the I layer of the graph convolution that is also the input of
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the (I + l)th layer. N is the number of the vertices on the pros-
tate contour, while d; is the feature dimension of each vertex.
X(H1 ¢ R¥*dit g the output feature of the (I+ 1)™ layer of
the graph convolution, whereby d;; is the dimension of the
output feature. The graph convolution operation (GCO) is
defined as follows,

XD = o(D—%AD—%X“) WI’I) (1)

where A = A + Iy is the adjacency matrix of the graph G
with self-connections. The self-connections are implemented
by adding the identity matrix Iy. The element of the adja-
cency matrix A denotes whether an edge exists between two
vertices of the prostate contour. D is the degree matrix of A.
W is a layer-specific trainable weight matrix, and o(-) is an
activation function.

The GCN generalizes the convolutional operation from a
grid data to a non-Euclidean graph data. The graph convolu-
tional operation aims to generate representations for vertices
by aggregating its own feature and the features of its neigh-
boring vertices. Based on multiple graph convolutional lay-
ers, the high-level vertex representations can be obtained.
This representation generation methodology is also called
information propagation. From this point-of-view, Eq. (1) can
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FiG. 3. Overview of the multiscale convolutional neural network feature encoder. [Color figure can be viewed at wileyonlinelibrary.com]

be considered as an information propagation rule. The high-
level representations of vertices are very important for vertex
classification or regression. Based on the high-level vertex
representations, the locations of the vertices can be predicted
accurately. Therefore, an accurate prostate contour can be
predicted by the GCN.

Information propagation in GCN is the main distinction
from a CNN that also constitutes an important concept in
GCN. Similar to CNNs, GCNs learn a new feature represen-
tation for each vertex in a graph over multiple layers.® The
feature of each vertex at the beginning is averaged with the
features of its neighboring vertices. The feature will be
updated based on different layers. This update can be
expressed over the entire graph as a matrix multiplication
between A and X.

The proposed GCN module is shown in Fig. 4.

In our method, the GCN block consisted of two graph con-
volutional operations (GCOs) and six cascaded residual GCOs.
Therefore, the GCN block is a multilayer architecture. In each
layer, the vertex feature is obtained by aggregating the features
of its neighbors that are one hop away. This implies that after
multiple layers, a vertex obtains feature information from all
vertices that are multiple-hops away in the graph. This multi-
layer architecture is similar to CNNs, wherein the depth can
increase the receptive field of the internal features.*’ The
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proposed GCN block can also increase the receptive field by
using multiple GCOs and residual GCOs. The fcl, fc2, and fc3
in Fig. 4 denote the fully connected layers that have different
output dimensions. The residual GCO consists of two GCOs
with two nonlinear activation rectified linear functions (ReLLUs)
and a skip connection. A graph convolution operation and a
fully connected layer are added after the output feature of the
cascaded residual GCOs.

3.B.3. Loss function

The proposed model is trained with a contour matching
loss, which is used for the evaluation of the accuracy of the
predicted interaction points. We assume that the points have a
well-defined order. Therefore, the vertices of the ground truth
and those of the prediction should be well matched to calcu-
late the loss. The contour vertices of ground truth are defined
as gt = {gfto, g1, -, gfr—1}, and interaction points of the
prediction are defined as ip = {ipo,ipy,---,ipy—1}. N is the
number of the interaction points. The contour matching loss
L, 1s defined as follows.

N—1
Len(ip,gt) = _ min > lipi—gt i
=0

A )

]E[O"'

351907 SUOWIWIOD SANER.D 3|qed! dde 31 Ag pauseA0B aJe S3o1Le YO 88N JO 3N 0} Aeiq 1T 3UIIUQ AB]IA UO (SUORIPUOD-PUE-SLLLIBI WD A3 1M Afeiq) 1P jUO//:Sdy) SUOIPUOD PUe SWwild L a1 39S *[£20¢/70/G0] U0 Ariqiiauliuo AB)im ‘Aiseaiun Buojoerr velx Aq 2zeyT dw/z00T 0T/10p/wod™ 48| i Aeiq 1 jpuljuo widee//SAny woJj papeojumoq ‘6 ‘0202 ‘60CVELYZ.


www.wileyonlinelibrary.com

4169 Tian et al.: Interactive prostate segmentation 4169
Input :  GCN feature and the adjacent matrix @ : sum operation
______ | '
|residualGCO | x5 : five cascaded risidualGCOs @ : matrix product
—_—— e —_— — — -
———————————————————— 1 |- - T T T T T ——-
' GCO | | residualGCO
I feature I
I I
I I
| Y —— =1
Input —9»

|

| .

| | feature, adjacent
|

|

Vertices prediction

|
|
|
|
|
Relu | |
|
|
|
|
|

___ v __

| |
| GCO J|<—| residualGCO | x5

—_— —_— — — — —

Fi1G. 4. Overview of the graph convolutional network (GCN) block. The GCN block consists of two types of operations, namely the graph convolutional opera-
tion (GCO) and the residual graph convolutional operations (residual GCO). The GCO is used at the beginning and ending of the GCN block for the adjustment
of the feature dimensions. The residual GCO is used to learn more representative features for interactive segmentation. Additionally, fcl, fc2, and fc3, are three
fully connected layers. The CNN feature and the adjacent matrix are the inputs of the graph convolution operation. The convolutional neural network feature is a

40 x 258 feature map, while the adjacent is a 40 x 40 matrix.

where i and j are the indices of the vertices of the prediction
and ground truth, respectively. To calculate the loss function
L., the sum of the distances between two sets of vertices
SV llipi—gtil, should be calculated. However, there is no
one-to-one match between the two point sets. Therefore, we
should calculate the sum of the distances of all the possible N
matches. The minimum sum distance is then selected as the
loss. The subscript of gt is used to implement all the possible
N matches.

3.C. Interactive GCN module

To mimic the processing of user interactions, we simulated
an annotator that shifted the predicted incorrect vertex to its
correct location (ground truth). The model was trained to pre-
dict the shifts of 2k neighboring vertices (k neighbors on
either side) of the current interaction point. In our experi-
ment, we set k = 2. This parameter can be changed during
the test to control the neighborhood range. The shifting of the
vertex (x;,y;) is denoted as (Ax;, Ay;).

We added two extra channels to the GCN feature X,cz,c,
namely, (Ax;, Ay;). Therefore, the input feature of the interac-
tive GCN module X,¢,z,c5 is presented as follows,

XgL'nLocS = Concat{chm (AX,‘, A)’i), (xi7 yt)} (3)

where i = 1,--*,N, N is the number of interaction points. We
set the value of (Ax;, Ay;) to zero for other vertices that did
not belong to the 2k neighboring vertices. During the train-
ing, we let the annotator choose to correct the vertex with the
worst accuracy. This was achieved based on the identification
of the maximum Manhattan distance between the predicted
and ground truth vertices. The interactive GCN module chose
the worst prediction and re-predicts its 2k neighbors
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iteratively. At each iteration, the interactive GCN module pre-
dicted the new locations of neighbors of the current interac-
tion point, and then corrected the next vertex with the worst
prediction. To allow the model to learn the user’s interactive
ability, we performed the aforementioned operations in an
iterative manner.

3.D. Evaluation metrics

To quantitatively evaluate the proposed methods, four popu-
lar metrics were used in our experiments. Two metrics were
region-based, namely, the Dice similarity coefficient (DSC)
and the relative volume difference (RVD). The other two met-
rics were distance-based, namely, the Hausdorff distance (HD)
and the average symmetric surface distance (ASD). The DSC
was obtained with the following equation,

2|Roi N Ry

DSC = —F—1——
|Rt| + [Rpre |

x 100%, 4
where Ry; and R, are the prostate ground truth and predicted
regions, respectively. The operator |*| represents the number of
pixels in a region. The metric RVD is used to evaluate the pre-
diction irrespective of whether it tends to cause under-segmen-
tation or over-segmentation. The RVD is defined as follows.

[Ryre| — R

R

RVD = x 100%. (5)

The HD metric is defined as follows.

HD = max (max (min(d(i, j))) ,max (min (d(i, j)))) ,

i€Bpre \ jEBy Jj€By \i€Bpe
(6)
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where B, is the boundary of the ground truth, and B, is the
boundary of prediction. d(i;j) is the Euclidean distance
between pixel i (prediction) and pixel j (ground truth). The
ASD is defined as follows,

ASD = ;
[Byre| + [Ba
x (Z d(i,By) + () Bm), g
i€Byye JEBy

where d is the distance from a point to a boundary.

4. EXPERIMENTAL RESULTS AND DISCUSSION
4.A. Data

In total, 140 subjects of prostate MRI from three datasets
were used for the training model in our experiments. These
included PROMISE12 (50 subjects),” International Sympo-
sium on Biomedical Imaging 2013 (ISBI2013) (49 subjects),
and in-house (41 subjects) datasets. Our in-house MR subject
dataset included transversal T2-weighted MR images which
were scanned at 1.5 T and 3.0 T. The voxel size varied from
0.4 to 1 mm. The matrix sizes of the transverse images ran-
ged from 512 x 512 to 320 x 320. To evaluate the proposed
method, we used the ground truths of 30 test subjects from
PROMISEI12 and 41 in-house subjects which were labeled by
the radiologists. Each slice was manually labeled by two radi-
ologists who had 15 yr and 3 yr of experience, respectively.
In addition, each radiologist labelled the slices three times.
To avoid the situation in which the two radiologists would
remember previous labelled examples, successive manual
segmentations were performed one week apart with respect
to each other. Majority voting was adopted to fuse the labels
segmented by the two radiologists.

4.B. Implementation details

The algorithm was implemented in Python with developed
codes subject to the PyTorch framework. The algorithm ran
on an Ubuntu system with an Intel Xeon E5-2620 CPU (2.1
GHz) and with a 64 GB memory. Our code used a GTX 1080
Ti GPU with 11 GB memory. The implementation was not
optimized and did not use multithread and parallel program-
ming.

During the training, a learning rate was set as 1 x 1073,
The weights of the CNN encoder were initialized with the use
of the pre-trained model based on natural images.

4.C. Qualitative results

The segmentations of six subjects obtained from the PRO-
MISE12 test dataset are shown in Fig. 5. The prostatic apex
and base are not easily segmented. Therefore, a subdivision
scheme was used to compute values of four metrics on three
subregions of the prostate. All prostate slices were divided
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into three parts that included the apex subregion, mid-gland
subregion, and base subregion (30%, 40%, and 30%, respec-
tively).

The images from the three subregions of the prostate were
chosen for qualitative evaluation. Each subregion presented
two result images from different subjects. In Fig. 5, three col-
umns showed the apex, mid-gland, and base images, respec-
tively. The values of the evaluation metrics were overlaid on
the resulting images. Blue contours included the ground truth
manually labelled by the radiologists, while the red contours
were the results obtained from the proposed method. From
the figure, we can observe that the proposed method could
obtain accurate results from all three subregions.

4.D. Quantitative results

The quantitative segmentation results of the proposed
automatic mode on in-house dataset are shown in Table L.
Five-fold cross validation was adopted in this experiment.
The proposed method yielded a DSC of 93.8% + 1.2%, a
HD of 58 mm £+ 2.4 mm, and an ASD of 1.0 mm +
0.3 mm on the entire gland. The results show that the pro-
posed method could yield a relatively accurate segmentation
with a low standard deviation. In addition, it could yield a
RVD of —4.0% =+ 4.0%. This value indicates that the pro-
posed method achieves an effective tradeoff between the
under-segmentation and over-segmentation. Meanwhile, the
proposed method could respectively yield a DSC of
92.9% + 2.1%,94.9% + 1.4%, and 93.1% =+ 1.6% on base,
mid-gland, and apex subregions, respectively. The results of
the apex and base are comparable with those of the mid-
glands.

Besides the experiment on the in-house dataset, the quan-
titative results on the PROMISEI2 test dataset are also pre-
sented. These achieved a DSC of 94.44% + 1.03%, a RVD
of 0.03% + 3.59%, a HD of 8.66mm £+ 3.47 mm, and an
ASD of 1.36mm + 0.33 mm.

To evaluate the effectiveness of the proposed multiscale
CNN encoder, an ablation experiment was performed on 30
test subjects of PROMISE12 and in-house dataset. The evalu-
ation results of the four metrics of each subregion are shown
in Table II and III. The results show that the proposed multi-
scale CNN feature encoder could improve the segmentation
accuracy.

4.E. Comparison with other methods

A set of eight state-of-the-art image segmentation methods
310.20.28.33736 were chosen as the benchmark to evaluate the
proposed method. The reported results in the tables were
obtained based on the application of publicly available codes
of these methods on the datasets. The comparisons of these
eight methods with our method are listed in Tables IV and V.
Four metrics are chosen to evaluate the performances of these
methods. The results are reported as average =+ standard
deviation.
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DSC:94.8 HD:7.2
RVD:3.0 ASD:0.9
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DSC:94.3 HD:4.5
RvVD:2.9 ASD:1.0

'DSC:95.7 HD:4.1
RVD:-0.4 ASD:1.0

Fic. 5. Qualitative results of six prostate MR cases from the PROMISEI?2 test dataset. The red curves are the results of the proposed method. The blue curves are
the manually labeled ground truth. The first column shows the results of the apex subregion. The middle column shows the results of the mid-gland subregion.
The last column shows the base subregion. Four metric values are presented on the MR images, including the DSC (%), RVD (%), HD (mm), and ASD (mm).
DSC is a Dice similarity coefficient (%). RVD is a relative volume difference (%). HD is the Hausdorff distance (mm), and ASD is the average symmetric surface

distance (rmm). [Color figure can be viewed at wileyonlinelibrary.com]

To emphasize the superiority of the proposed method, a
statistical significance experiment was performed on the
whole gland in terms of the DSC and ASD. We did a t-test
for reporting the improvements. The analyses of the tests
showed that there was a statistically significant difference on
the entire gland (P < 0.05) both in terms of DSC and ASD.

4.F. Evaluation of interactions

To evaluate the performance of the interactive mode, the
mean intersection over union (IoU) scores’’ were com-
puted according to the number of clicks. Fig. 6 shows the
IoU score vs the number of clicks on PROMISEI12 test set.
From the figure, we can observe that the segmentation
accuracies of three subregions increase along with the
number of clicks increases. The performance of the pro-
posed method has no much improvement after eight clicks.
This helps the users decide how much effort should be
input to obtain the best segmentation results. In our experi-
ment, the DSC increases from 94.4% to 95.7% with three
interactions on PROMISEI12 test set. Meanwhile, the DSC
increases from 93.8% to 95.3% with three interactions on
in-house dataset.

4.G. Evaluation of robustness

To evaluate the influence of the neighborhood range k of
the interaction point, the DSC values obtained from experi-
ments with five different parameters k are reported. From the
Fig. 7, we can see that the DSC varies within a small range.
This proves that the proposed method is robust to the parame-
ter k.
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Different users may yield different variations by clicking
and dragging the interaction points. To evaluate the user vari-
ability of the proposed interactive segmentation method, two
radiologists were recruited to use the proposed interactive
method. The DSC metric and in-house dataset were used to
evaluate the user variability. The DSC obtained from the first
user was 95.7%, while the second user obtained a DSC of
93.4%. The experimental results showed that the proposed
interactive segmentation method achieved a high DSC and
considerable user variability. Therefore, the high DSC of our
method is associated with an increased cost of user variabil-

1ty.

4.H. Evaluation of loss function

To evaluate the performance of L1 contour matching
loss that used in the proposed method, three popular loss
functions were chosen for comparison. These three loss
functions are earth mover loss, chamfer loss, and L2 con-
tour matching loss. PROMISEI12 dataset was adopted for
the comparison experiment. The results are shown in
Table VI. From the table, we can observe that the L1
contour matching loss performs best among these loss
functions.

4.1. Ablation study

We conducted an ablation study to show the superiority of
the proposed multiscale encoder (ME) and multiple residual
GCO blocks (MRG). A bare-bone adaption of Ling’s
method®* was chosen as baseline in this ablation study. PRO-
MISEI2 dataset was adopted in the experiment. The ablation
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TasLE I. Quantitative segmentation results from a 41 in-house dataset
Whole Gland Base Mid-gland Apex

CaseID  DSC RVD HD ASD  DSC RVD HD ASD  DSC RVD HD ASD  DSC RVD HD ASD
01 93.6 —4.5 4.6 1.0 922 -0.3 4.6 1.1 95.0 —6.7 4.5 0.9 92.9 —4.9 3.6 0.9
02 93.8 -59 4.1 0.8 91.4 -9.9 4.1 1.0 96.0 -2.8 3.0 0.7 93.2 —8.7 33 0.9
03 93.8 -172 4.0 0.9 94.8 —4.6 4.0 0.9 93.8 -9.8 3.6 1.1 93.0 —4.9 32 0.8
04 94.5 0.8 5.0 0.9 94.1 1.0 5.0 0.9 95.7 0.0 4.1 0.9 93.1 2.7 3.6 0.9
05 93.4 1.0 8.1 0.9 91.6 —4.3 8.1 1.0 95.8 2.6 3.0 0.8 92.0 6.1 4.1 0.9
06 92.5 —4.1 7.3 0.9 87.1 -9.7 7.3 1.4 95.8 —1.1 3.7 0.7 93.1 -13 32 0.8
07 93.5 —4.4 3.7 0.7 94.5 -0.9 3.0 0.7 95.2 =31 2.0 0.6 90.0 —11.6 3.7 0.9
08 94.9 —5.4 5.7 0.8 93.8 —6.7 5.7 0.9 96.1 —4.9 2.8 0.7 94.4 —-3.8 2.8 0.6
09 94.5 —4.3 9.8 1.1 95.3 —6.1 12.1 1.0 96.0 —-32 8.9 1.1 91.5 —4.9 9.8 1.3
10 93.8 —6.5 6.4 0.9 94.1 —6.0 3.6 0.9 95.0 —6.7 4.0 0.9 91.9 —6.7 6.4 0.9
11 92.3 —8.8 6.2 1.0 89.1 —15.0 6.2 1.3 93.7 -9.0 42 1.0 93.8 1.8 32 0.8
12 92.0 —8.1 9.1 1.5 89.8 —12.2 9.1 1.8 92.6 -9.5 8.6 L5 93.5 3.2 42 1.0
13 94.4 -1.0 5.0 0.7 93.2 0.0 5.0 0.8 95.3 -0.9 2.8 0.6 94.4 -2.7 2.2 0.6
14 93.9 -9.2 5.4 0.8 93.8 -9.4 5.4 0.8 94.3 -9.7 3.0 0.8 93.5 —7.8 2.4 0.7
15 94.4 —6.5 4.7 1.0 95.3 —5.0 4.1 1.0 94.5 —9.0 5.0 1.0 93.4 —3.6 3.7 0.9
16 95.4 —14 52 1.0 95.8 —4.7 4.1 0.9 96.2 -0.8 5.1 1.0 94.1 0.0 5.2 1.0
17 95.1 —3.4 3.6 0.7 95.2 —-4.9 3.0 0.7 96.0 —2.1 3.6 0.7 93.9 =51 32 0.8
18 94.9 —1.2 6.0 1.0 92.9 1.7 6.3 1.3 96.5 —1.7 5.4 0.9 94.8 -29 4.1 0.9
19 92.5 -59 4.1 0.9 92.0 1.2 4.0 0.9 95.7 —4.9 3.0 0.8 88.9 —14.2 4.1 1.2
20 95.1 —1.2 3.6 0.7 96.0 0.9 3.0 0.7 95.0 2.2 3.6 0.8 94.4 -2.5 2.2 0.6
21 94.2 7.3 6.2 1.2 92.6 12.7 6.2 1.5 95.0 4.6 42 1.1 95.0 1.9 4.0 0.8
22 93.1 1.7 7.3 1.4 92.3 11.3 6.6 1.6 95.1 1.5 6.4 1.3 91.3 —8.6 7.3 1.4
23 93.7 -72 4.0 0.9 94.4 -5.8 3.6 0.8 94.6 —8.0 4.0 1.1 92.0 —6.5 3.6 0.9
24 94.2 —5.1 4.5 0.8 922 =37 5.0 0.8 95.7 -59 3.6 0.8 94.2 —4.3 4.5 0.8
25 94.3 —4.4 6.2 1.1 92.6 —-1.2 7.2 1.2 95.8 —4.1 8.0 1.1 94.1 —6.7 5.8 1.2
26 92.2 -7.8 6.0 1.0 90.4 —6.8 4.5 1.2 94.3 -173 4.1 1.0 91.1 —10.4 6.0 1.1
27 92.5 —6.8 71 1.1 88.3 —13.6 7.2 1.7 95.7 -22 5.1 0.9 92.6 -173 3.7 0.9
28 93.3 33 8.5 1.4 92.4 —6.2 7.8 1.5 93.1 9.0 8.5 1.6 94.4 2.7 4.0 1.0
29 93.1 0.9 16.0 2.0 93.8 -3.6 9.7 1.6 93.8 8.1 11.7 23 91.5 —8.6 16.0 1.9
30 93.5 —2.8 6.4 1.1 89.6 —9.4 6.4 1.7 95.1 0.6 42 1.0 95.3 -1.9 3.7 0.8
31 95.0 -35 35 0.8 94.6 —3.1 3.0 0.8 95.4 -3.0 35 0.8 94.6 -59 2.4 0.7
32 95.0 —0.2 3.6 0.7 94.8 —1.6 3.6 0.8 95.6 43 3.0 0.7 94.3 —5.0 33 0.7
33 95.3 L5 5.0 0.9 95.1 0.7 5.0 1.0 95.9 3.0 32 0.8 94.7 0.1 4.1 0.9
34 92.8 0.3 11.4 1.7 92.0 —11.4 11.4 2.0 94.5 6.7 6.4 1.4 91.2 7.4 8.6 1.7
35 94.7 —6.3 5.7 1.0 92.7 —12.0 6.1 1.4 96.6 —4.7 9.1 0.9 94.3 -33 4.1 1.0
36 91.6 —9.6 5.1 1.0 93.1 -25 4.0 0.9 89.8 —15.2 8.0 1.3 92.0 —9.0 32 0.8
37 93.5 —6.4 5.1 1.1 93.1 —6.5 52 1.2 93.6 —6.3 4.6 1.1 93.8 —6.4 4.1 1.0
38 91.0 —11.9 4.1 1.0 91.5 —12.0 3.6 0.9 91.8 —10.3 4.1 1.0 89.4 —14.5 42 1.2
39 92.3 -9.2 4.1 1.0 92.7 -175 3.0 0.9 92.5 —8.7 4.1 1.1 91.4 —11.7 4.0 1.0
40 95.4 -59 5.0 1.0 94.9 —6.6 4.0 1.0 95.9 =51 44 1.1 95.2 —6.7 5.0 1.1
41 95.6 —4.3 32 0.7 94.9 —6.1 2.4 0.6 96.5 —3.3 32 0.7 95.0 —4.8 3.0 0.7
Avg. 93.8 —4.0 5.8 1.0 92.9 —4.6 5.4 1.1 94.9 —32 4.8 1.0 93.1 —4.4 4.5 1.0
Std. 1.2 4.0 24 0.3 2.1 5.8 23 0.3 1.4 5.3 22 0.3 1.6 5.0 2.4 0.3

The values of the four metrics of the whole gland and the three gland subregions (base, mid-gland, and apex) are shown. Four metrics are used to evaluate the performance,
including the Dice similarity coefficient (%), relative volume difference (%), Hausdorff distance (mm), and ASD (mm).

results are show in Table VII. Compared with the baseline,
the DSC of only using multiscale encoder or the multiple
residual GCO blocks increases 1.14% and 2.53%, respec-
tively. The DSC of both using two modules increases from

91.26% to 94.44%.
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4.J. Computation time

The training time of the proposed model was approxi-
mately 6 h, while the inference time of the automatic GCN
approach required 56 ms for one MR image. In the interactive

25UB017 SUOLUWIOD BAIERIO 3[Ge01dde ) AQ pauiA0D a8 a1 WO ‘88N J0 S| 10y AReiq178UIIUO AB1IM UO (SUOIPUOD-PUE-SLBI WO A3 1 AIRIq1 PUIIUO//SANY) SUORIPUOD PUE SWLR | 841 885 *[£202/70/50] U0 ARi1 1 8UIIUO AB11M AISAIUN BUOICeIr LetX Ad 2ZEvT dW/Z00T OT/10p/LI00"B] 1M Ateiq1jBu |uo"Ludee /'Sty WoJ ppeojumod ‘6 ‘0202 ‘602VELYE



4173 Tian et al.: Interactive prostate segmentation

TasLE II. Quantitative prostate segmentation results obtained from a PRO-
MISEI2 test dataset

DSC RVD HD ASD
(%) (%) (mm) (mm)

Whole Gland
Baseline w/o multiscale CNN 93.79 0.25 8.61 1.47
encoder
Baseline with multiscale CNN 94.44 0.03 8.66 1.36
encoder
Apex
Baseline w/o multiscale CNN 93.01 —0.65 775 1.61
encoder
Baseline with multiscale CNN 93.80 0.04 7.69 1.54
encoder
Mid-gland
Baseline w/o multiscale CNN
encoder

Baseline with multiscale CNN 96.37 0.13 6.23 1.21
encoder

95.68 1.11 6.96 1.38

Base
Baseline w/o multiscale CNN 92.85 —0.65 8.75 1.92
encoder

Baseline with multiscale CNN 9399 —-0.82 8.57 1.76
encoder

The results of the whole gland, base, apex, and mid-gland regions are shown.

TasLE III. Quantitative prostate segmentation results obtained from an in-
house dataset

DSC  RVD  HD ASD
(%) (%) (mm)  (mm)

‘Whole Gland
Baseline w/o multiscale CNN 92.47 —4.72 7.66 1.16
encoder
Baseline with multiscale CNN 93.77 —-3.99 5.84 1.01
encoder
Apex
Baseline w/o multiscale CNN 92.19 —5.40 5.76 1.02
encoder
Baseline with multiscale CNN 93.09 —4.42 4.47 0.95
encoder
Mid-gland
Baseline w/o multiscale CNN 9324 -3.56 6.24 1.20
encoder
Baseline with multiscale CNN 9490 —3.22 4.82 0.98
encoder
Base
Baseline w/o multiscale CNN 91.73 —5.78 6.56 1.27
encoder

Baseline with multiscale CNN 92.93 —4.63 5.45 1.10
encoder

The results of the whole gland, base, apex, and mid-gland regions are shown.

approach, the proposed model re-used the CNN feature of the
automatic approach that only consumed 13 ms to generate an
inference after the onset of the interaction operation
Table VIII.

Medical Physics, 47 (9), September 2020

4173

The total interaction time of the segmentation of a prostate
was 1.5 min on average. This included 20 s for drawing
bounding boxes, 70 s for correcting erroneously predicted
vertices to the proper locations.

5. CONCLUSION AND DISCUSSIONS

In this study, we developed and evaluated a GCN for the
segmentation of the prostate gland from MR images. To
allow learning of more representative features for improved
accuracy, a multiscale CNN feature encoder was proposed.
To effectively train the GCN for prostate segmentation, we
proposed a contour matching loss function. The contour
matching loss was preferred to preserve boundary details that
are useful for the contour-based interactive segmentation
method. The proposed method could yield more accurate
segmentation compared with several other popular methods.
We defined the interactive prostate segmentation from a novel
point-of-view based on the use of the GCN. Our segmenta-
tion method benefitted from GCN from two perspectives: (a)
the segmented contour can be further improved by correcting
the interaction points based on GCN that yielded more accu-
rate segmentation results, (b) the GCN-based segmentation
method could obtain the segmented prostate segmentation
efficiently. We believe that the proposed method can be
extensively used for different image modalities and different
regions-of-interests in medical images.

Most current CNN-based prostate segmentation methods
treat prostate segmentation as a pixel-wise labeling problem
and define the segmentation model at the pixel-level. Accord-
ingly, each pixel of the input image needs to be classi-
fied.*®* In this way, it is very difficult to incorporate the
shape priors of the prostate. In addition, ambiguous regions,
image saturation, and low-resolution prostate images will
seriously affect the performance of the pixel-level prostate-
segmentation methods. In this study, the proposed method
considered the segmentation of prostate images as a prostate
contour prediction problem. The contour of the prostate was
represented with several vertices. Compared with other
CNN-based prostate segmentation methods, the proposed
GCN-based method does not need to classify each pixel of
the image, but only predicts the vertices on the contour of the
prostate by the GCN. The proposed GCN-based method can
produce accurate prostate segmentation. In addition, the pro-
posed GCN-based method can refine the segmentation result
in an interactive manner. Furthermore, the time required by
the proposed interactive module to formulate an inference
was only 13 ms. The reduced time required to formulate an
inference is very important for the responsive user interfaces.
Traditional and CNN-based methods require 700—-4000 ms to
draw inferences.'*® Therefore, the proposed GCN-based
algorithm is more suitable for interactive segmentations.

Although the proposed method achieves accurate segmen-
tation, there are still some limitations. The proposed method
is a deep-learning-based method that depends on the number
of MR volumes. More MR volumes could yield more accu-
rate results based on deep-learning methods. Although we
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TasLE IV. Comparison results of eight previously published state-of-the-art segmentation methods applied on a PROMISEI2 test set
Type DSC(%) RVD(%) HD(mm) ASD(mm)
PSPNet*® auto 75.49 + 9.41 471 + 20.52 2458 + 15.26 2.89 £ 0.72
FCN* auto 82.37 + 5.56 6.07 + 10.59 19.64 + 19.79 2.39 +£ 0.71
U-Net** auto 84.71 + 6.52 2.40 + 7.98 15.92 + 6.85 1.89 + 0.42
V-Net* auto 85.29 + 6.82 3.49 £+ 8.79 16.78 + 6.60 2.02 + 0.46
DeepLabV3+° auto 86.45 + 5.09 —6.17 + 7.09 23.08 + 19.07 2.20 £ 0.42
Superixel3 semi-auto 87.03 + 3.21 428 + 9.27 5.04 + 1.03 2.14 £+ 0.35
Grab-Cut'® semi-auto 78.41 £+ 15.62 12.22 + 21.52 21.52 + 11.27 293 + 1.70
ExtremeCut® semi-auto 90.78 + 2.45 —3.44 £222 10.94 + 2.22 1.93 + 0.14
Ours semi-auto 94.44 + 1.03 0.03 + 3.59 8.66 + 3.47 1.36 + 0.33
TasLE V. Comparison results of eight previously published state-of-the-art segmentation methods applied on in-house dataset
Type DSC(%) RVD(%) HD(mm) ASD(mm)
PSPNet*® auto 83.96 + 8.90 8.82 £+ 19.40 16.06 + 14.46 2.04 + 1.00
FCN>? auto 80.33 + 10.67 6.73 + 46.33 13.24 4+ 5.64 2.79 £ 1.54
U-Net™ auto 86.73 £ 6.87 —1.78 + 19.28 3171 + 2775 2.03 £ 113
V-Net* auto 81.77 + 9.74 6.15 & 25.13 19.01 + 17.33 247 + 131
DeepLabV?iJr36 auto 82.86 + 6.99 —5.76 + 13.58 13.29 £+ 6.51 1.96 + 0.63
Superixel3 semi-auto 89.25 + 1.90 0.81 + 8.20 8.75 + 2.70 1.71 £ 0.41
Grab-Cut'® semi-auto 74.86 + 17.80 14.53 + 48.87 15.70 + 5.76 1.92 + 0.89
ExtremeCut® semi-auto 88.78 + 1.41 —19.79 + 2.54 10.35 + 3.51 1.85 4+ 0.42
Ours semi-auto 93.77 + 1.15 —3.99 + 4.03 5.84 + 245 1.01 £+ 0.27
——o—Whole ——Apex —A—Mid-gland —%—Base 100 -
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FiG. 6. Effects attributed to the number of clicks. [Color figure can be viewed
at wileyonlinelibrary.com]

have collected 140 volumes from three datasets, the amount
and diversity of the data can be increased to improve accu-
racy. The automatic GCN approach required only 56 ms to
segment an MR image, and has many clinical applications in
prostate cancer diagnosis and therapy. The costs associated
with a semi-automatic algorithm are the interaction time and
the observer variability. In our interactive segmentation
method, the user interaction time is 1.5 min on average for
one patient case that is less efficient than the fully automated
methods. In addition, owing to the involvement of humans,
the method yields higher observer variability than the fully
automated methods.

The proposed method aims to segment the whole gland of
the prostate. However, the segmentation of the peripheral and
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Parameter &

Fic. 7. Effects of parameter k on the segmentation performance. When the
value of the parameter k varies from 1 to 5, the Dice similarity coefficient
does not exhibit considerable change. This shows that the proposed method
is robust to the neighborhood range of the interaction point.

TaBLe VI. Comparison with three loss functions on PROMISE12 dataset

DSC(%) RVD(%) HD(@mm) ASD(mm)
Earth mover loss 92.17 2.66 9.86 1.76
Chamfer loss 93.54 —0.75 10.23 1.49
L2 contour matching loss 93.78 0.36 9.20 1.48
L1 contour matching loss 94.44 0.03 8.66 1.36

transition zones of the prostate®® would be more useful as
cancerous lesions have different appearances in the two
zones. Therefore, the proposed method will be extended in
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TaBLE VII. The effects of the proposed multiscale encoder (ME) and the
proposed multiple residual GCO (MRG)

DSC(%) RVD(%) HD(@mm)  ASD(mm)
Baseline 91.26 2.32 11.89 1.93
Baseline + ME 92.40 0.19 9.76 1.72
Baseline + MRG 93.79 0.25 8.61 1.47
Baseline + ME + MRG 94.44 0.03 8.66 1.36

PROMISEI12 dataset was adopted for this ablation study. Baseline is bare-bone
adaption of Ling’s method.**

TasLe VIII. Computation time required by the proposed method after its
application on a magnetic resonance image

Methods Time (ms)
Extreme-Cut?’ 164
Ours(automatic module) 56
Ours(interactive module) 13

ExtremeCut was used for comparison.

our future work to achieve the zonal segmentation of the
prostate.

The proposed GCN-based segmentation method can be
extended to handle 3D segmentations. In these cases, the pre-
dicted 3D segmentation masks are considered as 3D shapes
composed of triangular meshes. The vertices of the triangular
meshes are considered as graph nodes in the GCN. These
nodes incorporated with CNN features can be input to GCN
for 3D segmentation.
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