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Accurate segmentation of the prostate on magnetic resonance (MR) images plays an important role for
prostate cancer diagnosis and treatment. Although many automated prostate segmentation methods
have been proposed, the performance still faces several challenges, which includes large variability in
prostate shape, unclear boundary, and complex intensity distribution. Therefore, the results obtained
from the automated methods should be further refined by users to get a more accurate and reliable seg-
mentation. In this paper, we propose an end-to-end interactive segmentation method to refine the auto-
mated results. A convolutional long short term memory (convLSTM) module and a gated graph neural
network (GGNN) are presented in the proposed method for prostate segmentation in both automated
and interactive manners. A boundary loss is proposed to train our model. We evaluated the proposed
method on two public available datasets and one in–house dataset. Experimental results show that the
proposed convLSTM module could obtain a DSC of 91.78% on the test dataset, which outperforms eight
state-of-the-art methods. A further 1.5% improvements can be obtained by user interactions based on
the GGNN. The segmentation time including user interactions and inference time was 2.3 min on average
for segmenting one volume.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Prostate cancer is one of the most common cancer diseases in
the world and causes massive people deaths every year. An esti-
mated 174650 new cases of prostate cancer will be diagnosed in
the United States during 2019. 31620 deaths will occur from pros-
tate cancer in 2019. Magnetic resonance imaging (MRI) has
become a routine modality for prostate treatment planning and
many other applications [1–4]. Accurate segmentation of the pros-
tate and lesions from MRI is an important step in prostate cancer
diagnosis and treatment. However, fully manual segmentation of
each MR image is a tedious task. In addition, it is a time consuming
and subjective work, which rely on the experience of the readers.
Therefore, many prostate MR image segmentation methods have
been proposed in recent years [5–7,4].

Although many deep learning based automated segmentation
methods have achieved good performance for medical image seg-
mentation [8–11], these methods are not robust and accurate
enough for routine clinical use. To address the problem, semi-
automatic and interactive segmentation methods are proposed
[12,13,7], which incorporates minimal user input. These methods
are becoming an attractive and reasonable choice to improve auto-
matic segmentation results.

In this work, we propose a contour interaction-based segmenta-
tion method for prostate on MR images. The proposed method
gains an initial segmentation by drawing a bounding box around
the object firstly, which similar to GrabCut [14]. In contrast with
GrabCut method that gets segmentation by drawing click/scribble
on background and foreground regions respectively, we present a
different interactive manner by dragging a wrong control point
on the predicted prostate contour to a right location. The user
can intervene and correct the wrong predicted control points
whenever an inaccurate segmentation occurs. The pipeline of our
proposed methods involves two techniques. First, convolutional
long short-term memory [15] is adopted to predict the vertices
location of the prostate contour sequentially, which is similar to
the process of users delineating the prostate contour. Second, we
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exploit a gated graph neural network [16] to learn the interactive
capability and get a refined contour.

To the best of our knowledge, this is the first work exploring
convolutional LSTM and GGNN based interactive method for pros-
tate segmentation on MR image. The proposed method is designed
for 2D segmentation slice-by-slice. The contributions of the pro-
posed method are listed as follows. (1) We propose an end-to-
end segmentation method for prostate MR images both in auto-
mated and interactive manners. A convolutional LSTM and a gated
graph neural network are introduced in the proposed method. The
prostate contour can be automatically obtained based on the
ConvLSTM. Then, the contour is refined by user interaction based
on the GGNN. (2) A loss function consisting of cross entropy loss
and boundary loss is proposed to improve the performance of
the proposed method. (3) The proposed ConvLSTM module is able
to improve the segmentation 1.0% in DSC compared with the state-
of-the-art method on a prostate MR dataset. By adopting the
GGNN, we can achieve a further 1.5% improvements upon the user
refinement.

The remainder of the paper is organized as follows. In Section 2,
the related works are reviewed. In Section 3, we present details of
the proposed method. Experimental results are shown in Section 4.
The paper is concluded in Section 5.
2. Related work

In the past decades, hand-crafted feature based and deep learn-
ing based methods have been widely used in the application of
prostate segmentation [3,17,18,6]. According to whether there is
a human interaction in the segmentation process, these methods
can be divided into automatic segmentation method and interac-
tive segmentation method.

Recently, many automatic methods have been proposed for seg-
mentation task, which includes deformable model based [19,14],
traditional machine learning based methods [20,21], and deep
learning based methods [6,9,10,17,22,23,18]. For biomedical image
segmentation task, level set algorithm gains more and more atten-
tions because of the advantage of numerical computations [21]. In
the level set methods [24], the curve includes the internal energy
coming from the curve and the external energy coming from the
data. The curve evolves iteratively by moving the descent of the
level set energy. A large variety of traditional machine learning
based segmentation methods have also been proposed. For exam-
ple, Li et al. [25] presented an online learning and patient-specific
classification method based on location-adaptive image context for
prostate segmentation. Soumya et al. [26] proposed a supervised
learning method based on decision forest to achieve a probabilistic
representation of the prostate voxels. Similarly, Yang et al. [27]
presented a 3D prostate segmentation method, which combines
longitudinal image registration and machine learning method. Ste-
phanie et al. [28] proposed a registration and machine learning-
based automated segmentation method for subcortical and cere-
bellar brain structures.

For deep learning based methods, convolutional neural net-
works (CNNs) have achieved great success in both the computer
vision and medical image analysis fields. Following this trend,
many researchers utilize various CNNs for learning image feature
representation in the application of medical image segmentation
[6,9,10,17,22,23]. Fully convolutional networks (FCN) [29] is the
first work to use CNNs for segmentation task. Inspired by FCN,
researchers proposed lots of FCN-based algorithms for medical
image segmentation [6,10,22,23]. For example, Tian et al. [18] pro-
posed an end-to-end deep fully convolutional neural network to
segment the prostate automatically, which is called PSNet. Ron-
neberger et al. [22] took the idea of the FCN and proposed a U-
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net architecture. It can successfully extract representative feature
for medical segmentation task with a reasonable network depth.
The architecture consists of a contracting path to capture context
information and a symmetric expanding path to find object local-
ization. Several works also focus on 3D architectures for volumetric
medical image segmentation. Milletai et al. [23] presented a 3D V-
Net architecture with the 3D convolution to perform volumetric
medical image segmentation. Yu et al. [6] proposed a volumetric
ConvNet to segment prostate on MR images. Zhu et al. [11] used
an inter-slice correlation of recursive neural networks for auto-
matic prostate MR image segmentation. Although these automatic
segmentation methods could get good segmentation, it is still not
accurate enough for routine clinical use.

For interactive segmentation methods, it provides an effective
manner where a human and a machine collaborate to get a more
accurate segmentation result. Many interactive image segmenta-
tion algorithms have been proposed [14,12,30,13,31]. GrabCut
was [14] proposed for interactive object segmentation based on
the graph cut algorithm [8]. The GrabCut uses an easy interactive
way that only needs the user drawing a bounding box around
the interesting object region. A scribble-based interactive graph
cuts [19] method was proposed by Boykov. A max-flow/min-cut
algorithm was used to provide a global optimal solution for final
segmentation result. With the success of using deep learning
methods in automatic segmentation manner, more and more inter-
active segmentation methods using CNNs have been proposed. For
instance, Wang et al. [13] proposed an interactive medical image
segmentation method by adding an image-specific adaptation
model for CNNs to get segmentation result. Lin et al. [32] devel-
oped an interactive algorithm to train CNN for segmentation
supervised by scribbles. Wang et al. [33] proposed an interactive
segmentation method that adopts geodesic distance transforms
of scribbles as a channels of CNN. Rajchl et al. [34] combined
Grab-cut and CNN for medical image segmentation. Papadopoulos
et al. [35] proposed an extreme-point based interactive segmenta-
tion method, which allows the users to click the top, right-most,
bottom and left-most extreme points of an object for getting the
segmentation result. These bounding-box-based and scribble/
click-based interactive methods treat segmentation as a pixel-
wise labeling problem that needs to classify each pixel. Comparing
with these interactive segmentation methods, the proposed
contour-based method does not need to classify each pixel of the
image, but only predicts the vertices on the contour. In addition,
the contour-based interactive manner can directly obtain the final
accurate boundaries by correcting erroneously predicted vertices.

Castrejon et al. [36] proposed a contour-based interactive seg-
mentation method. An object boundary is used to present the seg-
mentation result. The boundary is refined by dragging the wrong
predicted boundary to their correct locations. Acuna et al. [37] pro-
posed an efficient interactive annotation method that refers to as
polygon-RNN++ based on the GGNN. This is a 2D segmentation
method in a contour-based interactive manner. Wang et al. [38]
first applied GGNN to handle the interactive 3D segmentation.
The GGNN was used to propagate the user interaction to the 3D
neighboring nodes. These two methods used a region-based loss
function for contour-based interactive segmentation. In contrast,
we proposed a contour-based loss (boundary loss) for contour-
based segmentation. In addition, the polygon-RNN++ [37] consists
of four main modules, including recurrent neural network, rein-
forcement learning, evaluator network, and graph neural network.
These four modules were trained separately that is difficult to get a
global optimization. In contrast, the proposed method only con-
tains two main modules that was trained end-to-end.

In this paper, we propose a ConvLSTM and a GGNN based inter-
active segmentation method to predict the prostate contour in an
end-to-end manner. We denote prostate contour as a series of
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connected sequential vertices by imitating manual delineation
from radiologists. The LSTM enables our model to capture spatial
relation between neighboring vertices as what radiologist does
during delineation. It is suitable for the convolutional LSTMs to
segment prostate by predicting the vertices of the prostate contour
sequentially. These vertices are connected with each other to form
a graph. The GGNN is good at processing graph data [39]. There-
fore, the GGNN is adopted to refine the locations of these vertices
on the prostate contour.
3. Method

3.1. Overview of the proposed method

In this study, the proposed method is designed for 2D segmen-
tation slice-by-slice. Prostate segmentation is obtained by predict-
ing the vertices of the prostate contour sequentially. The vertices
prediction of the prostate contour is considered as a classification
task. The proposed method continues its automatic prediction
and interactive correction iteratively by moving the erroneously
predicted contour vertices to their right locations. Several cascaded
convolutional LSTM [15] layers are used to predict the location of
each contour vertex step by step, which is called ConvLSTMs mod-
ule. The input of ConvLSTMs module is a 28 � 28 � 128 CNN fea-
ture map, which is produced by an atrous multi-scale feature
encoder. In our multi-scale feature encoder, a modified ResNet101
[40] with atrous convolutional (AC) operation, a SE block [41], and
a skip-layer architecture are used to get an effective output resolu-
tion and a multi-scale feature representation. In particular, we also
use a location block in the ConvLSTMs module. It aims to get a pre-
cise presentation for a vertex of prostate contour, which is a one-
hot encoding with size of 28 � 28 � 1. In addition, we use a GGNN
module to gain user interactive ability and a high output resolu-
tion. Our GGNN module consists of a propagation block with a
gated recurrent unit (GRU) [42] and a prediction block. The GGNN
has two inputs, which are the corrected vertices of the contour pro-
duced by the ConvLSTMs module and a 112 � 112 � 256 multi-
scale feature produced by the multi-scale feature encoder. In our
implementation, we mimic a user dragging an inaccurate vertex
to the true location iteratively. In each interactive step, we only
let the 2k neighbor vertices of current corrected vertex be pre-
dicted. The overview of the proposed method is shown in Fig. 1.
Fig. 1. Overview of the
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3.2. CNN encoder

Inspired by ResNet-101, a multi-scale CNN feature encoder is
proposed, which is shown in Fig. 2. Different with ResNet-101,
the fully connected layers and the last average pooling layer are
removed in our method. In addition, the convolution operations
in the last two residual layers of ResNet-101 are replaced by atrous
convolution with 2, 4 dilated rates respectively. A squeeze-and-
excitation (SE) block is also added at each residual layer, which
enables the CNN encoder to get more important feature by learning
a channel-wise weight. Four 3 � 3 convolution layers are adopted
after four layers, which are the first 7 � 7 convolution layer, the
first residual layer, the second residual layer, and the last residual
layer with AC, respectively. In order to get multi-scale spatial fea-
ture, the output features of four 3 � 3 convolutions are concate-
nated as the input of ConvLSTMs module. Three bilinear up-
sampling operations are performed to make them have same spa-
tial size. Then, the concatenated feature are fed into two consecu-
tive 3 � 3 convolution layers. Finally, the output feature of the two
consecutive 3 � 3 convolution layers is concatenated with the out-
put of a pyramid scene parsing network (PSPNet) module [43],
which could yield an accurate segmentation result. In our experi-
ment, the pyramid scene parsing network follows the last residual
block. The final concatenated 28 � 28 � 128 feature will be fed into
the GGNN module. The sizes of all feature maps are also shown in
Fig. 2.

3.3. ConvLSTMs module

Convolutional LSTM is useful for getting the spatial contextual
information of a sequential input data and predicting vertices by
applying linear and non-linear functions, which could carry history
information. In this work, the ConvLSTM is used as a decoder to
make a coherent prediction of the vertices of the prostate contour.
A two-layer ConvLSTM is performed to output a vertex at each
time step. The ConvLSTMs module would be performed in T time
steps. T can be changed during train stage and test stage. The pre-
dictions of t � 1 and t � 2 time steps, the hidden state of t � 1 time
step, and the CNN feature are concatenated as the input of the t
time step to make a prediction.

Each time step is followed by a location block. The location
block consists of a 1 � 1 convolution, a ReLu non-linear function,
and a softmax function. The output of location block is a
proposed method.



Fig. 2. Multi-scale CNN feature encoder.
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28 � 28 � 1 one-hot encoding feature, which shows the location of
the predicted vertex at time step t.

3.4. GGNN

The GGCNN contains two blocks, which are propagation block
and prediction block. The propagation block is used to propagate
the information between vertices, and the prediction block is
applied for predicting the location of vertex. The propagation block
consists of two weight blocks. Each weight block has three parallel
channels, which is shown in Fig. 3. Each channel contains two FC
layers and a tanh activation function. In addition, a gated recurrent
unit is used to update the incorporated information based on pre-
vious predicted vertices. The output of the propagation block is fed
into the gated recurrent unit. The propagation block [16] can be
formulated as follows.

h0
v ¼ xTv ;0

� �T ð1Þ
Fig. 3. Diagram of the gated graph neural network
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atv ¼ AT
v hðt�1ÞT

1 . . .hðt�1ÞT
jV j

h iT
þ b ð2Þ

ht
v ¼ f GRU ht�1

v ; atv
� �

ð3Þ

The matrix A presents how nodes of a graph communicate with
each other. ht

v is the hidden state, where t denotes the time-step
and xv is the initial state of a node v . As for the prediction block,
the graph-level output for node v can be defined as follows.

hv ¼ tanh
X
v2V

r f 1 concate hT
v ;xv

� �� �� �
� tanh f 2 concate hT

v ;xv
� �� �� � !

ð4Þ

where the sigmoid function r �ð Þ decides which node is relevant to
the current graph-level task. f 1 and f 2 are either a neural network or
a linear function that output real-valued predicted vectors. The tanh
function can be also replaced with an identity. In our implements, a
FC layer followed by an activation function and another FC layer to
form the prediction block.

In this study, the number of vertices was fixed as 30 for all
slices. Also, the vertex number does not change from the convLSTM
to GGNN output. We have tried different numbers of vertices for
presenting the prostate contour. The experimental results show
that the accuracy have a negligible change when the number of
vertices varies from 25 to 40.

3.5. Loss function

To better evaluate the similarity between ground-truth contour
and the predicted contour, a new loss function consisting of a cross
entropy loss function Lce and a boundary loss function [44] Lbl is
proposed. The cross entropy loss Lce is computed as follows.

LceðhÞ ¼ �
X
y

y logrhðxÞ þ ð1� yÞ log 1� rhðxÞð Þ ð5Þ

where rhðxÞ is the output of the a deep neural network, x is the
input of the network, while y represents the ground truth. h denotes
the trainable parameters of the neural network. The boundary loss
Lbl is defined as follows.

LblðhÞ ¼
Z
I
udist CGðpÞ;pð Þsoftmax rhðpÞð Þdp ð6Þ
. The fc represents the fully connected layer.
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udist CGðpÞ;pð Þ is a signed distance matrix between point p 2 I and
the nearest point CGðpÞ on the ground-truth contour CG, which is
constructed by the distance transform of the ground-truth contour.
udist CGðpÞ;pð Þ ¼ �kp� GðpÞk if p in the ground-truth region G and
udist CGðpÞ;pð Þ ¼ kp� GðpÞk otherwise. I denotes an image. The dia-
gram of the boundary loss is shown in Fig. 4. In training stage, the
Ltotal is used as final loss function, which is defined as follows.

ŁtotalðhÞ ¼ kLceðhÞ þ ð1� kÞLblðhÞ ð7Þ
where k is a weight between Lce and Lbl. We set it as 0.3 in our
experiments.

3.6. Interactive segmentation

In order to mimic the processing of user interaction, the incor-
rect predicted vertex is moved to its correct location (ground
truth). In this paper, the network is trained to predict the 2k (k
neighbors on either side) neighbor interaction points of current
moved vertex by predicting the clockwise k neighbors firstly and
then counter-clockwise.

4. Experimental results

4.1. Dataset and evaluation metrics

In our experiments, 140 subjects of prostate MRI were used for
training. These subjects are from three data sets, which are PRO-
MISE12 (50 subjects), ISBI2013 (49 subjects), and in–house (41
subjects) data sets. The subjects are transversal T2-weighted MR
images, which are scanned at 1.5 T and 3.0 T. The voxel size varies
from 0.4 mm to 1 mm. The size of the transverse images is from
320� 320 to 512� 512. A windowed sinc interpolation is used to
get isotropic volume for each case. 30 test subjects from PRO-
MISE12 including the ground truths were used to evaluate the pro-
posed method.To quantitatively evaluate the proposed method,
four metrics were used, which are Dice similarity coefficient
(DSC), relative volume difference (RVD), Hausdorff distance (HD)
and average symmetric surface distance (ASD). The first two met-
rics are region-based and the last two metrics are distance-based.
The DSC is used to evaluate the fraction of coverage between the
prediction and ground truth, which is calculated as follows,

DSC ¼ 2 Rgt \ Rpre

�� ��
Rgt

�� ��þ Rpre

�� ��� 100%; ð8Þ
Fig. 4. Diagram of the boundary loss function. The CG and CP are the contours of the
ground truth and the prediction. DS denotes the region between CG and CP .
udist CGðpÞ; pð Þ is a signed distance matrix between point p and its nearest point
CGðpÞ on the ground-truth contour CG .

88
where Rgt and Rpre are respectively the prostate regions of ground
truth and prediction. The operator �j j represents the number of pix-
els in a region. The RVD is used to evaluate the prediction whether
method tends to be under-segmentation or over-segmentation,
which is defined as the following equation.

RVD ¼ Rpre

�� ��� Rgt

�� ��
Rgt

�� �� � 100%: ð9Þ

The HD is used to measure the Hausdorff distance between predic-
tion and ground truth, which is defined as follows,

HD ¼ max max
i2Bpre

min
j2Bgt

ðdði; jÞÞ
� �

;max
j2Bgt

min
i2Bpre

ðdði; jÞÞ
� �� �

; ð10Þ

where Bgt represents the boundary of ground truth, Bpre represents
the boundary of prediction. dði; jÞ is Euclidean distance between
pixel i and pixel j. The ASD is calculated as follows,

ASD ¼ 1
Bpre

�� ��þ Bgt

�� ��� X
i2Bpre

d i;Bgt
	 
þX

j2Bgt
d j;Bpre
	 
0

@
1
A; ð11Þ

where dð�Þ presents the distance from a point to a boundary.
4.2. Implementation details

The proposed method was mainly implemented in Python lan-
guage. A deep learning framework PyTorch was used to implement
the proposed method. The codes ran on a platform of Ubuntu with
2 GPUs of NVIDIA GTX 1080 Ti. The proposed model was trained
using the Adam optimizer. The initial learning rate was set as
2e�6 and decreased by a weight decay of 0.1 every two epochs.
The batch size was set as 6.
4.3. Qualitative results

The qualitative results obtained from ConvLSTM module on six
prostate volumes are shown in Fig. 5. The red curves are the pre-
dicted prostate contours from the proposed method, while the blue
curves are the manually labeled ground truth. These images have
different prostate sizes and shapes, which shows the robustness
of our method for different prostate MR images. It also shows that
the proposed method could get satisfactory segmentation results
for prostate MR images.
4.4. Ablation study

We conducted an ablation study to evaluate the contributions
of the AC, SE block, PSP module, and BL to the overall performance
of the proposed method. The ablation results are shown in Table 1.
When only atrous convolution (AC) is used, the DSC increases
0.76% � 2.16% for the whole-gland and three sub-regions, which
are the apex, mid-gland, and base regions. When the SE block is
added, the DSC improves 0.17% for the whole-gland. The PSP brings
another 0.57% improvement in terms of DSC. The BL is found to be
useful and finally makes the DSC increase to 91.78% for the whole-
gland. From the table, we can see that the proposed method
(Baseline + AC + SE + PSP + BL) has the highest DSC for the
whole-gland and three sub-regions. Especially for the mid-gland,
it achieves the highest DSC of 93.99%. For the whole-gland, the seg-
mentation results are also the best in terms of RVD, HD, and ABD.
These results of the ablation experiment shows that the perfor-
mance can be improved by using AC, SE, PSP, and BL together or
separately.



Table 1
Quantitative results of ablation study on whole-gland and three subregions, which are apex, mid-gland, and base subregions, which are apex, mid-gland, and base subregions.
Four metrics were used to evaluate the performance, including the DSC (%), RVD (%), HD (mm), and ASD (mm).

DSC RVD HD ABD

Whole-gland Baseline 88.81 7.14 11.80 2.07
Baseline + AC 90.49 �3.17 12.13 1.87
Baseline + AC + SE 90.66 4.23 11.79 1.92
Baseline + AC + SE + PSP 91.23 2.65 11.62 1.83
Baseline + AC + SE + PSP + BL 91.78 2.64 10.32 1.73

Apex Baseline 87.50 8.20 11.95 2.29
Baseline + AC 88.26 �0.71 11.47 2.13
Baseline + AC + SE 89.98 �3.39 10.06 2.05
Baseline + AC + SE + PSP 90.08 �2.61 10.54 2.04
Baseline + AC + SE + PSP + BL 90.26 �2.47 9.61 1.96

Mid-gland Baseline 91.06 8.09 15.22 2.24
Baseline + AC 93.11 �1.45 9.74 1.85
Baseline + AC + SE 92.85 �2.62 10.05 1.90
Baseline + AC + SE + PSP 93.47 �0.96 10.01 1.81
Baseline + AC + SE + PSP + BL 93.99 �1.38 8.60 1.67

Base Baseline 87.21 5.39 13.38 2.73
Baseline + AC 89.37 �7.41 12.14 2.45
Baseline + AC + SE 88.55 �7.01 13.15 2.61
Baseline + AC + SE + PSP 89.51 �5.32 12.06 2.40
Baseline + AC + SE + PSP + BL 90.44 �4.79 10.65 2.25

Fig. 5. Qualitative results based on automatic segmentation. The red curves are the predicted prostate contours, while the blue curves are the manually labeled ground truth.
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4.5. Quantitative results

To further evaluate the performance of the proposed method,
we compared our approach with eight state-of-the-art methods,
which are PSPNet [43], FCN [29], U-Net [22], V-Net [23], Dee-
pLabV3+ [45], Grab-Cut [14], PolyRNN++ [37], and ExtremeCut
[46]. The quantitative comparison results are shown in Table 2.
For the whole-gland of prostate, the proposed method gets the
highest DSC of 91.8% with the lowest standard deviation of 1.3%.
Compared with eight state-of-the-art methods, the proposed
method gets the lowest absolute value of RVD. In terms of the
other two metrics HD and ABD, the proposed method also achieves
the best performance with low standard deviation. For the other
89
three subregions, we can see that the proposed method performs
rather well in the apex and base subregions. For the middle-
gland subregion, the proposed is slight lower than the U-net
method but has a lower standard deviation than the U-net. The
quantitative evaluation agrees with the conclusions from the qual-
itative results.

To further evaluate the proposed boundary (BD) loss function,
we performed a comparison experiment with the active contour
(AC) loss [47]. The AC loss was combined with our proposed plain
model (without loss) for the comparison experiment. The compar-
ison results are presented in Table 3. From the table, we can
observe that the proposed loss function performs better than the
AC loss.



Table 2
Comparison of the proposed method with eight state-of-the-art methods.

Whole DSC RVD HD ABD

PSPNet 80.5 ± 7.2 7.4 ± 15.3 20.2 ± 14.3 2.5 ± 0.7
FCN 82.4 ± 5.6 6.1 ± 10.6 19.6 ± 19.8 2.4 ± 0.7
U-Net 84.7 ± 6.5 3.4 ± 8.0 15.9 ± 6.9 1.9 ± 0.4
V-Net 85.3 ± 6.8 3.5 ± 8.8 16.8 ± 6.6 2.0 ± 0.5
DeepLabV3+ 86.5 ± 5.1 �6.2 ± 7.1 23.1 ± 19.1 2.2 ± 0.4
Grab-Cut 87.0 ± 4.4 3.2 ± 6.5 17.2 ± 10.3 1.9 ± 0.5
PolyRNN++ 88.1 ± 3.4 2.7� 6.4 15.8�5.2 2.1�0.5
ExtremeCut 90.8 ± 2.5 �3.4 ± 2.2 10.9 ± 2.2 1.9 ± 0.1
Ours 91.8 ± 1.3 2.6 ± 3.8 10.3 ± 4.1 1.7 ± 0.4

Apex PSPNet 73.9 ± 12.2 12.9 ± 25.4 19.0 ± 8.9 3.4 ± 1.2
FCN 77.6 ± 13.2 15.9 ± 36.4 15.2 ± 8.2 3.1 ± 1.5
U-Net 78.4 ± 13.6 13.6 ± 43.7 14.8 ± 7.0 2.5 ± 1.0
V-Net 83.1 ± 11.2 1.1 ± 20.7 14.9 ± 9.5 2.4 ± 1.0
DeepLabV3+ 83.0 ± 8.5 �11.1 ± 18.1 13.7 ± 5.3 2.8 ± 0.9
Grab-Cut 84.1 ± 6.7 7.1 ± 11.4 11.6 ± 5.1 2.6 ± 0.6
PolyRNN++ 87.5 ± 3.5 7.5 ± 8.4 12.7 ± 5.1 2.2 ± 0.7
ExtremeCut 88.8 ± 3.2 �4.1 ± 5.1 10.0 ± 3.8 2.2 ± 0.2
Ours 90.3 ± 2.2 �2.5 ± 6.6 9.6 ± 4.7 2.0 ± 0.5

Mid PSPNet 89.9 ± 5.1 �1.3 ± 11.2 17.0 ± 13.2 2.7 ± 1.0
FCN 92.1 ± 3.0 1.6 ± 11.7 15.8 ± 19.8 2.2 ± 0.9
U-Net 94.8 ± 1.4 �1.3 ± 5.5 8.9 ± 4.4 1.5 ± 0.3
V-Net 93.9 ± 1.8 2.5 ± 6.2 11.2 ± 5.4 1.7 ± 0.5
DeepLabV3+ 93.3 ± 2.3 �1.7 ± 7.9 11.7 ± 14.5 1.9 ± 0.4
Grab-Cut 93.1 ± 2.3 2.5 ± 5.8 9.3 ± 4.0 1.9 ± 0.5
PolyRNN++ 92.9 ± 2.2 2.3 ± 5.0 9.7 ± 3.4 2.0 ± 0.5
ExtremeCut 93.2 ± 2.2 �2.7 ± 2.4 8.9 ± 1.8 1.9 ± 0.2
Ours 94.0 ± 1.0 �1.4 ± 1.0 8.6 ± 3.3 1.7 ± 0.4

Base PSPNet 73.6 ± 10.6 �21.2 ± 20.0 22.5 ± 12.0 4.2 ± 1.7
FCN 74.5 ± 12.7 19.1 ± 21.3 19.6 ± 10.2 3.6 ± 1.3
U-Net 78.2 ± 14.1 12.5 ± 35.3 18.9 ± 10.9 3.0 ± 1.2
V-Net 76.3 ± 16.1 23.0 ± 30.0 18.3 ± 8.8 3.1 ± 1.1
DeepLabV3+ 81.0 ± 11.5 �6.5 ± 21.2 21.8 ± 19.0 3.1 ± 1.4
Grab-Cut 82.1 ± 9.5 5.5 ± 10.2 16.1 ± 11.2 2.8 ± 0.9
PolyRNN++ 87.2 ± 5.0 �3.8 ± 11.5 12.7 ± 5.6 2.5 ± 0.7
ExtremeCut 89.7 ± 3.2 �4.1 ± 3.4 10.1 ± 2.9 2.4 ± 0.3
Ours 90.4 ± 3.0 �4.8 ± 7.2 10.6 ± 4.3 2.2 ± 0.6

Table 3
The comparison results between the proposed boundary (BD) loss and the active contour (AC) loss functions.

DSC RVD HD ABD

Plain model + AC loss 90.7 ± 1.9 2.7 ± 4.1 12.4 ± 4.3 1.8 ± 0.4
Plain model + BD loss 91.8 ± 1.3 2.6 ± 3.8 10.3 ± 4.1 1.7 ± 0.4
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In our experiment, the segmentation time including user inter-
action and inference time required by the proposed method was 12
s on average for segmenting one image. The segmentation time of
Grab-cut was 55 s on average, while ExtremeCut was 8 s on aver-
age. Although ExtremeCut requires less time than our method, our
method obtains a better accuracy. In addition, ExtremeCut cannot
exactly correct the inaccurate boundaries based on its point-based
interaction manner. In contrast, the proposed interactive segmen-
tation method can directly obtain the final accurate segmentation
by correcting erroneously predicted vertices.

We also investigated whether the proposed method works for a
different segmentation task. A public fundus image dataset
REFUGE [48] was adopted to further evaluate our method. In this
experiment, 800 images were used for training, while 400 images
were used for testing. The optic disc was segmented from the fun-
dus image by the proposed method. Our method yields a DSC of
95.7�4.4%. The experimental result shows that the proposed
method can be generalized to handle a different segmentation task
and obtains a satisfactory result.

4.6. Interaction evaluation

Visual examples of how the proposed method is applied for
interactive segmentation are shown in Fig. 6. Two automatic seg-
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mentations with mis-segmentations followed by interactive
refinement are shown in Fig. 7.

To evaluate the performance of the proposed interactive seg-
mentation method, the segmentation results obtained before and
after user interaction are shown in Table 4. The average number
of clicks is 4.59 in our experiment. From the table, we can see
the interactive manner could yield better segmentation results
compared with automated manner, which increases the DSC from
91.78% to 93.23% with only few interactions. Furthermore, the
interactive manner also gets better performance in term of RVD,
HD, and ABD.

4.7. Effect of the number of clicks

To evaluate the effect of the number of clicks, we performed a
simulated experiment. In the experiment, we assume that the
users would like to correct the worst predicted vertex. The
predicted contour is compared with the ground truth to find the
worst predicted vertex, which will be corrected by the simulated
experiment. Therefore, we can mimic the processing of user inter-
action by moving the predicted incorrect vertex to its correct posi-
tion. The experimental result is shown in Fig. 8. DSC is used in the
experiment. The DSC became better with the increasing of the
number of clicks, which indicates that the interaction is helpful



Fig. 8. Effect of the number of clicks.

Fig. 6. Visual example of how the proposed method is applied for interactive segmentation. Red box is obtained based on the user cropping operation. The second image
shows the automatic segmentation obtained by ConvLSTM module. Green vertex is the first predicted vertex. In the third image, user selects an erroneously predicted vertex
and drags it to a proper location. Four neighboring vertices (red vertices) of the selected vertex are then re-predicted to new locations based on the GGNN. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. The effect of user interactions. The red curves are the predicted prostate
contours, while the blue curves are the ground truth.
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for improving the prostate segmentation. When the number of the
clicks reaches a certain value, the DSC has no increase anymore.
Therefore, we should choose a suitable value for the number of
the clicks. From the figure, we can see that 4 clicks are suitable
for mid-gland, while 7 clicks are suitable for base, apex and
whole-gland, respectively.
Table 4
Evaluation of the interactive segmentation compared with the automated segmentation.

DSC

Before Interaction Whole-gland 91.78
Apex 90.26
Mid-gland 93.99

(Without using GGNN) Base 90.44

After Interaction Whole-gland 93.23
Apex 92.67
Mid-gland 94.26

(With using GGNN) Base 92.46
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5. Conclusion

In this paper, we proposed an end-to-end interactive segmenta-
tion method, which consists of a convolutional long short term
memory module and a gated graph neural network module. We
evaluated the proposed method against eight state-of-the-art seg-
mentation models on prostate MR image dataset. Experimental
results demonstrate that the proposed method can get satisfactory
results and achieve superior results compared with other state-of-
the-art methods. In addition, we also evaluated the performance of
the proposed interactive segmentation compared with the pro-
posed automated segmentation method. The interactive segmenta-
tion could yield better result with few user interactions. In our
future work, we will extend the proposed method to segment dif-
ferent organs from other medical image modalities.

The proposed method does not rely on a specific design of the
backbone network. A more powerful backbone may improve the
RVD HD ABD

2.64 10.32 1.73
�2.47 9.61 1.96
�1.38 8.60 1.67
�4.79 10.65 2.25

�1.89 9.87 1.57
�1.63 8.58 1.64
�1.62 9.81 1.61
�2.51 10.90 1.95
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performance of our method. Note that, before a backbone being
adopted in the proposed method, the structure of the backbone
should be improved to fit the proposed framework. Therefore, sev-
eral improvements have been made in our method, e.g. atrous con-
volution, SE block, and PSPNet.

The proposed 2D GNN-based segmentation method can be gen-
eralized for the 3D segmentation task. One potential solution is
that the predicted 3D segmentation mask can be considered as a
3D surface in a triangular mesh. The vertices of triangular mesh
are considered as nodes in a 3D GNN model. Then, these nodes
incorporated with 3D CNN features can be input to GNN for 3D
segmentation task.

CRediT authorship contribution statement

Zhiqiang Tian: Conceptualization, Methodology, Writing - orig-
inal draft. Xiaojian Li: Methodology, Writing - original draft, Soft-
ware, Validation. Zhang Chen: Conceptualization, Methodology,
Software. Yaoyue Zheng: Methodology, Validation, Software.
Hongcheng Fan: Methodology, Validation. Zhongyu Li: Methodol-
ogy, Validation. Ce Li: Methodology, Validation. Shaoyi Du:
Methodology, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

This work was supported in part by the NSFC Nos. 61876148
and 61866022, and funded by China Post-doctoral Science Founda-
tion of No. 2018M631164 and the Fundamental Research Funds for
the Central Universities of No. XJJ2018254.

References

[1] B. Fei, C. Kemper, D.L. Wilson, A comparative study of warping and rigid body
registration for the prostate and pelvic mr volumes, Comput. Med. Imaging
Graph. 27 (4) (2003) 267–281.

[2] B. Fei, J.L. Duerk, D.T. Boll, J.S. Lewin, D.L. Wilson, Slice-to-volume registration
and its potential application to interventional mri-guided radio-frequency
thermal ablation of prostate cancer, IEEE Trans. Medical Imaging 22 (4) (2003)
515–525.

[3] G. Litjens, O. Debats, J. Barentsz, N. Karssemeijer, H. Huisman, Computer-aided
detection of prostate cancer in mri, IEEE Trans. Medical Imaging 33 (5) (2014)
1083–1092.

[4] W. Qiu, J. Yuan, E. Ukwatta, Y. Sun, M. Rajchl, A. Fenster, Prostate
segmentation: an efficient convex optimization approach with axial
symmetry using 3-d trus and mr images, IEEE Trans. Medical Imaging 33 (4)
(2014) 947–960.

[5] Z. Tian, L. Liu, Z. Zhang, J. Xue, B. Fei, A supervoxel-based segmentation method
for prostate mr images, Med. Phys. 44 (2) (2017) 558–569.

[6] L. Yu, X. Yang, H. Chen, J. Qin, P.A. Heng, Volumetric convnets with mixed
residual connections for automated prostate segmentation from 3d mr images,
in: Thirty-first AAAI conference on artificial intelligence, 2017.

[7] Z. Tian, L. Liu, Z. Zhang, B. Fei, Superpixel-based segmentation for 3d prostate
mr images, IEEE Trans. Medical Imaging 35 (3) (2015) 791–801.

[8] Y. Boykov, G. Funka-Lea, Graph cuts and efficient nd image segmentation, Int. J.
Computer Vision 70 (2) (2006) 109–131.

[9] D. Shen, G. Wu, H.-I. Suk, Deep learning in medical image analysis, Ann. Rev.
Biomed. Eng. 19 (2017) 221–248.

[10] G. Litjens, T. Kooi, B.E. Bejnordi, A.A.A. Setio, F. Ciompi, M. Ghafoorian, J.A. Van
Der Laak, B. Van Ginneken, C.I. Sánchez, A survey on deep learning in medical
image analysis, Med. Image Anal. 42 (2017) 60–88.

[11] Q. Zhu, B. Du, B. Turkbey, P. Choyke, P. Yan, Exploiting interslice correlation for
mri prostate image segmentation, from recursive neural networks aspect,
Complexity 2018 (2018).

[12] S.H. Park, Y. Gao, Y. Shi, D. Shen, Interactive prostate segmentation using atlas-
guided semi-supervised learning and adaptive feature selection, Med. Phys. 41
(11) (2014) 111715.

[13] G. Wang, W. Li, M.A. Zuluaga, R. Pratt, P.A. Patel, M. Aertsen, T. Doel, A.L. David,
J. Deprest, S. Ourselin, et al., Interactive medical image segmentation using
92
deep learning with image-specific fine tuning, IEEE Trans. Medical Imaging 37
(7) (2018) 1562–1573.

[14] C. Rother, V. Kolmogorov, A. Blake, Grabcut: Interactive foreground extraction
using iterated graph cuts, in: ACM transactions on graphics (TOG), Vol. 23,
ACM, 2004, pp. 309–314.

[15] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, W.-C. Woo,
Convolutional lstm network: A machine learning approach for precipitation
nowcasting, in: Advances in neural information processing systems, 2015, pp.
802–810.

[16] Y. Li, D. Tarlow, M. Brockschmidt, R. Zemel, Gated graph sequence neural
networks, arXiv preprint arXiv:1511.05493 (2015).

[17] Z. Tian, L. Liu, B. Fei, Deep convolutional neural network for prostate mr
segmentation, Int. J. Computer Assisted Radiol. Surgery 13 (11) (2018) 1687.

[18] Z. Tian, L. Liu, Z. Zhang, B. Fei, Psnet: prostate segmentation on mri based on a
convolutional neural network, J. Med. Imaging 5 (2) (2018) 021208.

[19] Y.Y. Boykov, M.-P. Jolly, Interactive graph cuts for optimal boundary & region
segmentation of objects in nd images, in: Proceedings eighth IEEE
international conference on computer vision. ICCV 2001, Vol. 1, IEEE, 2001,
pp. 105–112.

[20] P.-H. Conze, V. Noblet, F. Rousseau, F. Heitz, V. De Blasi, R. Memeo, P. Pessaux,
Scale-adaptive supervoxel-based random forests for liver tumor segmentation
in dynamic contrast-enhanced ct scans, Int. J. Computer Assisted Radiol.
Surgery 12 (2) (2017) 223–233.

[21] A. Hoogi, C.F. Beaulieu, G.M. Cunha, E. Heba, C.B. Sirlin, S. Napel, D.L. Rubin,
Adaptive local window for level set segmentation of ct and mri liver lesions,
Med. Image Anal. 37 (2017) 46–55.

[22] O. Ronneberger, P. Fischer, T. Brox, U-net, Convolutional networks for
biomedical image segmentation, in: International Conference on Medical
image computing and computer-assisted intervention, Springer, 2015, pp.
234–241.

[23] F. Milletari, N. Navab, S.-A. Ahmadi, V-net: Fully convolutional neural
networks for volumetric medical image segmentation, in: 2016 Fourth
International Conference on 3D Vision (3DV), IEEE, 2016, pp. 565–571.

[24] S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed:
algorithms based on hamilton-jacobi formulations, J. Comput. Phys. 79 (1)
(1988) 12–49.

[25] W. Li, S. Liao, Q. Feng, W. Chen, D. Shen, Learning image context for
segmentation of prostate in ct-guided radiotherapy, in: International
Conference on Medical Image Computing and Computer-Assisted
Intervention, Springer, 2011, pp. 570–578.

[26] S. Ghose, J. Mitra, A. Oliver, R. Marti, X. Lladó, J. Freixenet, J.C. Vilanova, D.
Sidibé, F. Meriaudeau, A random forest based classification approach to
prostate segmentation in mri, MICCAI Grand Challenge: Prostate MR Image
Segmentation 2012 (2012) 125–128.

[27] X. Yang, B. Fei, 3d prostate segmentation of ultrasound images combining
longitudinal image registration and machine learning, in: Medical Imaging
2012: Image-Guided Procedures, Robotic Interventions, and Modeling, Vol.
8316, International Society for Optics and Photonics, 2012, p. 83162O.

[28] S. Powell, V.A. Magnotta, H. Johnson, V.K. Jammalamadaka, R. Pierson, N.C.
Andreasen, Registration and machine learning-based automated segmentation
of subcortical and cerebellar brain structures, Neuroimage 39 (1) (2008) 238–
247.

[29] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic
segmentation, in, in: Proceedings of the IEEE conference on computer vision
and pattern recognition, 2015, pp. 3431–3440.

[30] N. Xu, B. Price, S. Cohen, J. Yang, T.S. Huang, Deep interactive object selection,
in, in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 373–381.

[31] J. Liew, Y. Wei, W. Xiong, S.-H. Ong, J. Feng, Regional interactive image
segmentation networks, in: 2017 IEEE International Conference on Computer
Vision (ICCV), IEEE, 2017, pp. 2746–2754.

[32] D. Lin, J. Dai, J. Jia, K. He, J. Sun, Scribblesup, Scribble-supervised convolutional
networks for semantic segmentation, in, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp. 3159–
3167.

[33] G. Wang, M.A. Zuluaga, W. Li, R. Pratt, P.A. Patel, M. Aertsen, T. Doel, A.L. David,
J. Deprest, S. Ourselin, et al., Deepigeos: a deep interactive geodesic framework
for medical image segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 41 (7)
(2018) 1559–1572.

[34] M. Rajchl, M.C. Lee, O. Oktay, K. Kamnitsas, J. Passerat-Palmbach, W. Bai, M.
Damodaram, M.A. Rutherford, J.V. Hajnal, B. Kainz, et al., Deepcut: Object
segmentation from bounding box annotations using convolutional neural
networks, IEEE Trans. Medical Imaging 36 (2) (2016) 674–683.

[35] D.P. Papadopoulos, J.R. Uijlings, F. Keller, V. Ferrari, Extreme clicking for
efficient object annotation, in: Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 4930–4939.

[36] L. Castrejon, K. Kundu, R. Urtasun, S. Fidler, Annotating object instances with a
polygon-rnn, in, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 5230–5238.

[37] D. Acuna, H. Ling, A. Kar, S. Fidler, Efficient interactive annotation of
segmentation datasets with polygon-rnn++, in: Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition, 2018, pp. 859–868.

[38] X. Wang, L. Zhang, H. Roth, D. Xu, Z. Xu, Interactive 3d segmentation editing
and refinement via gated graph neural networks, in: International Workshop
on Graph Learning in Medical Imaging, Springer, 2019, pp. 9–17.

http://refhub.elsevier.com/S0925-2312(21)00105-3/h0005
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0005
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0005
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0010
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0010
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0010
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0010
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0015
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0015
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0015
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0020
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0020
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0020
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0020
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0025
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0025
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0035
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0035
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0040
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0040
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0045
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0045
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0050
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0050
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0050
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0055
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0055
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0055
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0060
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0060
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0060
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0065
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0065
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0065
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0065
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0085
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0085
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0090
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0090
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0100
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0100
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0100
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0100
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0105
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0105
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0105
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0110
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0110
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0110
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0110
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0110
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0115
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0115
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0115
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0115
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0120
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0120
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0120
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0125
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0125
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0125
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0125
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0125
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0130
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0130
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0130
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0130
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0140
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0140
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0140
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0140
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0145
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0145
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0145
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0145
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0150
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0150
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0150
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0150
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0155
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0155
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0155
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0155
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0160
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0160
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0160
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0160
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0160
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0165
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0165
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0165
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0165
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0170
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0170
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0170
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0170
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0175
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0175
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0175
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0175
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0180
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0180
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0180
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0180
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0185
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0185
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0185
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0185
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0190
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0190
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0190
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0190


Z. Tian, X. Li, Z. Chen et al. Neurocomputing 438 (2021) 84–93
[39] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, P.S. Yu, A comprehensive survey on
graph neural networks, arXiv preprint arXiv:1901.00596 (2019).

[40] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[41] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018, pp. 7132–
7141.

[42] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
Y. Bengio, Learning phrase representations using rnn encoder-decoder for
statistical machine translation, arXiv preprint arXiv:1406.1078 (2014).

[43] H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network, in:
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 2881–2890.

[44] Y. Boykov, V. Kolmogorov, D. Cremers, A. Delong, An integral solution to
surface evolution pdes via geo-cuts, in: European Conference on Computer
Vision, Springer, 2006, pp. 409–422.

[45] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder-decoder with
atrous separable convolution for semantic image segmentation, in:
Proceedings of the European conference on computer vision (ECCV), 2018,
pp. 801–818.

[46] K.-K. Maninis, S. Caelles, J. Pont-Tuset, L. Van Gool, Deep extreme cut: From
extreme points to object segmentation, in: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 616–625.

[47] X. Chen, B.M. Williams, S.R. Vallabhaneni, G. Czanner, R. Williams, Y. Zheng,
Learning active contour models for medical image segmentation, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 11632–11640.

[48] J.I. Orlando, H. Fu, J.B. Breda, K. van Keer, D.R. Bathula, A. Diaz-Pinto, R. Fang, P.-
A. Heng, J. Kim, J. Lee, et al., Refuge challenge: A unified framework for
evaluating automated methods for glaucoma assessment from fundus
photographs, Med. Image Anal. 59 (2020) 101570.

Zhiqiang Tian is an associate professor at Xi’an Jiaotong
University. He received the B.S. degree in Automation
Control from the Northeastern University in 2004, the
M.S. and Ph.D. degrees in Control Science and Engi-
neering from Xi’an Jiaotong University in 2007 and
2013, respectively. He was a postdoctoral fellow in the
Department of Radiology and Imaging Sciences of
Emory University from 2014 to 2017. His research
interests are image/video processing, computer vision,
multimedia, and medical image analysis.
Xiaojian Li is a master student at the School of Software
Engineering in Xi’an Jiaotong University. He received
the B.S. degree in software engineering from the Beihua
University in 2017. His research interests include com-
puter vision, machine learning, and medical image
analysis.
Zhang Chen is a master student at the School of Soft-
ware Engineering in Xi’an Jiaotong University. He
received the B.S. degree in software engineering from
Xi’an Jiaotong University in 2018. His interests include
semantic segmentation, medical image analysis.
93
Yaoyue Zheng is a master student at the School of
Software Engineering in Xi’an Jiaotong University. She
received the B.S. degree of software engineering in Xi’an
Shiyou University in 2018. Her research interests
include machine learning, computer vision and medical
image analysis.
Hongcheng Fan is undergraduate and majors in soft-
ware engineering in Xi’an Jiaotong University. Her
research interests include computer vision, machine
learning, and medical image analysis.
Zhongyu Li received the BE and ME degree from Xi’an
Jiaotong University, China and the Ph.D. degree in
computer science from the University of North Carolina
at Charlotte, United States in 2012, 2015 and 2018,
respectively. Currently, he is an assistant professor in
the School of Software Engineering at Xi’an Jiaotong
University. His research interests include computer
vision and medical image analysis.
Ce Li received his Ph.D. degree in pattern recognition
and intelligence system from Xi’an Jiaotong University,
China in 2013. He is a professor at the College of Elec-
trical and Information Engineering, Lanzhou University
of Technology. His research interests include computer
vision and pattern recognition.
Shaoyi Du received B.S. degrees both in computational
mathematics and in computer science, M.S. degree in
applied mathematics and Ph.D. degree in pattern
recognition and intelligence system from Xi’an Jiaotong
University, China in 2002, 2005 and 2009 respectively.
He worked as a postdoctoral fellow in Xi’an Jiaotong
University from 2009 to 2011 and visited University of
North Carolina at Chapel Hill from 2013 to 2014. He is
currently a professor of Institute of Artificial Intelligence
and Robotics in Xi’an Jiaotong University. His research
interests include computer vision, machine learning and
pattern recognition.

http://refhub.elsevier.com/S0925-2312(21)00105-3/h0200
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0200
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0200
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0200
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0205
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0205
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0205
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0205
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0215
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0215
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0215
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0215
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0220
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0220
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0220
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0220
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0225
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0225
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0225
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0225
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0225
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0230
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0230
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0230
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0230
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0235
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0235
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0235
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0235
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0235
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0240
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0240
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0240
http://refhub.elsevier.com/S0925-2312(21)00105-3/h0240

	Interactive prostate MR image segmentation based �on ConvLSTMs and GGNN
	1 Introduction
	2 Related work
	3 Method
	3.1 Overview of the proposed method
	3.2 CNN encoder
	3.3 ConvLSTMs module
	3.4 GGNN
	3.5 Loss function
	3.6 Interactive segmentation

	4 Experimental results
	4.1 Dataset and evaluation metrics
	4.2 Implementation details
	4.3 Qualitative results
	4.4 Ablation study
	4.5 Quantitative results
	4.6 Interaction evaluation
	4.7 Effect of the number of clicks

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	References


